
Concept explainers
A block weighing 2.50 kg begins its motion from a stationary position at point A, located at the highest point of a frictionless ramp. The ramp is inclined at an angle of 40° relative to the horizontal and has a length of 1.50 m. As the block slides down the ramp, it reaches a region between point B and point C, which is a rough horizontal surface with a kinetic friction coefficient of 0.30. After covering a distance of 1.00 m on the horizontal surface, the block encounters a lightweight spring with a spring constant of 900 N/m.
By employing the work-energy theorem, determine the velocity of the block at point C just before it collides with the spring?


Step by stepSolved in 5 steps with 10 images

What is the total work performed on the block as it moves along the rough horizontal surface?
What is the total work performed on the block as it moves along the rough horizontal surface?
- A clock battery wears out after moving 10,000 C of charge through the clock at a rate of 0.500 mA. (a) How long did the clock run? (b) How many electrons per second flowed?arrow_forwardA particle accelerator produces a beam with a radius of 1.25 mm with a current of 2.00 mA. Each proton has a kinetic energy of 10.00 MeV. (a) What is the velocity of the protons? (b) What is the number (n) of protons per unit volume? (b) How many electrons pass a cross sectional area each second?arrow_forward-gauge copper wire has a diameter of 9.266 mm. Calculate the power loss in a kilometer of such wire when it carries 1.00102 A.arrow_forward
- A high-energy proton accelerator produces a proton beam with a radius of r - 0,90 mm. The beam current is I=9.00A and is constant. The charge density ofthe beam is n = 6.001011 protons per cubic meter, (a)What is the current density of the beam? (b) What is the drift velocity of the beam? (c) How much time does it take for 1.0010 m protons to be emitted by the accelerator?arrow_forwardAs shown in Figure CQ33.6, a person pulls a vacuum cleaner at speed v across a horizontal floor, exerting on it a force of magnitude F directed upward at an angle with the horizontal. (a) At what rate is the person doing work on the cleaner? (b) State as completely as you can the analogy between power in this situation and in an electric circuit.arrow_forwardIntegrated Concepts (a) What is the cost of heating a hot tub containing 1500 kg of water from 10.0°C to 40.0°C, assuming 75.0% efficiency to account for heat transfer to the surroundings? The cost of electricity is 9 cents/kW h. (b) What current was used by the 220-V AC electric heater, if this took 4.00 h?arrow_forward
- You place frozen soup (T = 17C) in a microwave oven for 3.5 min. The oven transfers 650 W to the soup. Model the soup as 0.35 kg of water (initially ice). What are the temperature and state of the soup when the oven stops?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forward
- Why do we need to be careful about work done on the system versus work done by the system in calculations?arrow_forwardWhat would be the maximum cost of a CFL such that the total cost (investment plus operating) would be the same for both CFL and incandescent 60-W bulbs? Assume the cost of the incandescent bulb is 25 cents and that electricity costs 10 cents/kWh, Calculate the cost for 1000 hours, as in the cost effectiveness of CFL example.arrow_forwardThe capacitances of three capacitors are in the ratio 1:2:3. Their equivalent capacitance when all three are in parallel is 120.0 pF greater than when all three are in series. Determine the capacitance of each capacitor.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





