College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A block of mass m1 = 3.25 kg is connected to a second block of mass m2 = 1.85 kg , as shown in the figure. (Figure 1) This system starts with m2 moving downward and m1 moving to the right with a speed of 1.3 m/s . They move through a distance d = 0.600 m , at which point m2 hits the floor. The coefficient of kinetic friction between m1 and the horizontal surface is μk = 0.509.
What speed do the masses have just before m2 lands?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The 60-kg crate is projected along the floor with an initial speed of vo = 6.8 m/s at x = 0. The coefficient of kinetic friction is μk = 0.55. Calculate the time t required for the crate to come to rest and the corresponding distance x traveled. Answers: t = Hk X = i VO S marrow_forwardThe diagram shows the all of the forces acting on a body of mass 3.13 kg. The three forces have magnitudes F1 = 59.2 N, F2 = 27.7 N, and F3 = 74.4 N, with directions as indicted in the diagram, where θ = 55.8 degrees and φ = 21.4 degrees. The dashed lines are parallel to the x and y axes. At t = 0, the body is moving at a speed of 5.29 m/s in the positive x direction. 1.)What are the x and y components of the acceleration in m/s2?arrow_forwardA cart of mass m, = 6.7 kg is on an inclined ramp (ø = 34.1 degrees). It is attached to a string of negligible mass that goes over an ideal pulley. The other end of the string is attached to another block of mass m, = 11.9 kg, as shown below. The wheels on the cart are good enough that friction between the cart and the ramp is negligible. If the blocks are given an initial speed of v, = 9.1 m/s (with m, moving down the plane), what is the common magnitude of the acceleration of the blocks? (in m/s^2)arrow_forward
- On an essentially frictionless, horizontal ice rink, a skater moving at 4.0 m/s encounters a rough patch that reduces her speed by 44% due to a friction force that is 28% of her weight.arrow_forwardThe car is fully loaded with passengers and has a total mass of 575 kg. At point A, the car is at the lowest point in a circular arc of radius r1 = 12.4 m. At point B, the car is at the highest point of a circular arc of radius r2 = 17.3 m. (a) If the car has a speed of 25.0 m/s at point A, what is the magnitude of the force (in N) of the track on the car at this point? (b) What is the maximum speed (in m/s) the car can have at point B in order for the car to maintain contact with the track at all times (that is, so that it does not "jump" off the track)?arrow_forwardThe figure shows a block of mass m resting on a 20o slope. The block has coefficients of friction us=0.64 and uk=0.54 with the surface of the slope. It is connected using a very light string over an ideal pulley to a hanging block of mass 2.0 kg. The string above the slope pulls parallel to the surface. What is the minimum mass m so the system will remain at rest when it is released from rest?arrow_forward
- Problem 8: A car of mass m = 1020 kg is traveling down a 0 = 12 degree incline. When the car's speed is vo = 11 m/s, a mechanical failure causes all four of its brakes to lock. The y coefficient of kinetic friction between the tires and road is u = 0.45.arrow_forwardYou are driving your car on a straight road with a coefficient of friction between the tires and the road of 0.55. A large piece of debris falls in front of your view and you immediate slam on the brakes, leaving a skid mark of 30.5 m (100-feet) long before coming to a stop. A policeman sees your car stopped on the road, looks at the skid mark, and gives you a ticket for traveling over the 13.4 m/s (30 mph) speedlimit. Draw the FBD of the car with complete details.arrow_forwardA horizontal force is applied to an object weighing 392 N that causes its speed to increase uniformly from 0 m/s to 6 m/s in 3 seconds. If we disregard the friction value, calculate the applied forcearrow_forward
- A block is launched up a 3.75 m high frictionless inclined plane (0 = 35.0°) with an %3D initial speed of vo = 12.5 m/s as shown in the figure below. (a) What is the block's %3D speed as it leaves the ramp? (b) How far from the base of the ramp does the block land? (Air resistance is negligible) Vo=12.5 m/s 3.75 m 0= 35.0° X= ?arrow_forwardAt the instant of the figure, a 1.00 kg particle P has a position vector 7 of magnitude 5.40 m and angle 01 = 41.0° and a velocity vector v of magnitude 4.50 m/s and angle 62 = 32.0°. Force F ,of magnitude 6.20 N and angle 03 = 32.0° acts on P. All three vectors lie in the xy plane. About the origin, what are the magnitude of (a) the angular momentum of the particle and (b) the torque acting on the particle? F (a) Number i Units (b) Number i Unitsarrow_forwardA horizontal force of 80.0 N is applied to a 5.00 kg block as the block slides a distance of 0.800 m along a horizontal floor. The coefficient of kinetic friction between the floor and the block is 0.500. If the block is initially at rest, how fast is it moving at the end of the displacement?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON