College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A block of mass 3.20 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m.
(a)
What is the elastic potential energy of the block-spring system (in J)?
J
(b)
If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring.
m/s
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An archer pulls her bowstring back 0.398 m by exerting a force that increases uniformly from zero to 231 N. (a) What is the equivalent spring constant of the bow? N/m (b) How much work does the archer do on the string in drawing the bow?arrow_forwardA box of mass 2.0 kg, traveling horizontally, hits an uncompressed spring with an initial velocity, Vo, and compresses the spring to a maximum distance of 0.05 meters (at the maximum distance the box stops). The value of the spring force constant is k= 50 N/m. There is no friction in the system. Use the work-energy theorem (chapter 6) to find the initial velocity, Vo, of the box.arrow_forwardA child of mass m = 16 kg slides down a slide of height h = 2.7 m without friction. Let gravitational potential energy be zero at ground level. a)Write an expression for the child's total mechanical energy, E, at the top of the slide, in terms of the variables in the problem and the acceleration due to gravity g. b)Calculate the change in the child's potential energy, ΔU in joules, from the top to the bottom of the slide at ground level (i.e. ΔU = Uground - Utop). c)What is the child's final speed, vf in m/s?arrow_forward
- You have a spring of spring constant k, and a block of mass 0.200 kg. You set the spring up vertically and compress the spring 0.300 m. It launches the block up to a max height of 2.20 m. What is the spring constant?arrow_forwardA 2.0 kg object is acted upon by a spring force characterized by the function F=-6x, (this means k = -6N/m). The speed of the object at x=3.0 m is 8.0 m/s. Determine the positive value for x where the speed of the object will be 4.9 m/s. Hint: The work done between values of x will be 1/2kx22-1/2kx12. Set this equal to the change in kinetic energy associated with the change in speed.arrow_forwardHow far, in meters, would a spring, with a spring constant of 184.8 N/m, need to be stretched in order to have an elastic potential energy of 47.7 Joules?arrow_forward
- An archer pulls her bowstring back 0.408 m by exerting a force that increases uniformly from zero to 215 N. (a) What is the equivalent spring constant of the bow? N/m (b) How much work does the archer do on the string in drawing the bow?arrow_forwardA spring is connected on one end to a wall and the other is free to be compressed. The spring constant is 25 N/cm for the spring. A 2.0 kg mass is pressed against the spring and then released and the entire system is placed on horizontal frictionless surface. (a) How much is the spring compressed when 15.0 J of energy is stored in the spring? (10.9 cm) (b) What is the acceleration when the spring is at 1/2 the maximum compression distance? (68.5 m/s2) (c) What is the maximum speed of the mass?arrow_forwardA certain spring is found not to obey Hooke's law; it exerts a restoring force F(x) = -ax² - 6x³ if it is stretched or compressed, where: a = 10.0N/m², B = 300.0N/m³ The mass of the spring is negligible. Calculate the potential energy function U(x) for this spring, if U(x=0) = 0. Find the spring potential energy at x = 0.500 marrow_forward
- A spring has a natural length of 13.6 cm and a spring constant of 230 N/m. How much elastic potential energy will the spring have when it is stretched by 5.12 cm?arrow_forwardSuppose a box of mass m slides toward a spring with a speed of Vi, presses 1.00 m into the spring, and then bounces away with a final speed of 15.0 m/s. Find the initial speed of the box. Take into account the work due to friction (μk = 0.5).arrow_forward= 500 N/m) whose other end is fixed. The ladle has a kinetic energy of 4.2 J as it passes A 0.18 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k through its equilibrium position (the point at which the spring force is zero). (a) At what rate is the spring doing work on the ladle as the ladle passes through its equilibrium position? (b) At what rate is the spring doing work on the ladle when the spring is compressed 0.070 m and the ladle is moving away from the equilibrium position? (a) Number Units (b) Number Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON