
A batch process is operated with the following sequence. The feed to the batch process consists of a solution of 500 L of ethanol with 120 mole of A and 120 mole of B. If the temperature of the solution is sufficient, A and B will react to form P (the desired product):
A (eth) + B (eth) → P (s)
DHreact
=
−
250
kJ/mol
(1)
Note that the product P is sparingly soluble in ethanol, which helps facilitate its removal from the reaction solution. It can be assumed that the reaction rate is first-order in both the concentration of A (cA ) and B (cB ), and so second-order overall:
-r A = k c A cB
The batch process consists of the following FOUR steps:
Initially, the tank is empty.
1. Fill tank with solution (ethanol/A/B). 50°C (1 hour)
Increase temperature of the feed from 20°C to
2. Reaction takes place isothermally at 50°C (4 hours, to give conversion of 50%)
3. Filtration of reaction solution to give product P (2 hours)
4. Drying with hot nitrogen gas followed by the removal of powder product (3 hours)
The conversion is 50%
-what is the overall material balance of this process?

Step by stepSolved in 3 steps with 12 images

- 13. A 3.05 g sample of ammonium nitrate is introduced into an evacuated 2.18 L flask with a fixed volume and then heated to 250.0 °C. What is the total pressure in the flask at 250.0 °C after the ammonium nitrate has completely decomposed according to the reaction below? NHẠNO3(s) → N¿0(g) + 2 H20(g)arrow_forwardProblem 4 You have developed a genetically engineered strain of a methanotroph bacteria (a bacteria that feeds on methane) that produces formaldehyde, a compound used in a variety of medical applications, and for the storage and preservation of biological tissue samples. The two main metabolic reactions involving methane (relevant enzymes not shown) are: CH4O2HCHO H20 CH4 202 CO2 2H20 You cultivate these bacteria in a bioreactor by feeding 100 mol/s of a 50 mol% methane, 50mol% oxygen stream, and recover the produced formaldehyde from the effluent. on extents of reaction to a) Draw and label a flowchart of the process. Use a DOF analysis ba determine how many process variable values must be specified for the remaining variables to be calculated b) Derive expressions (equations) for the product stream flow rates in terms of extents of reactions c) If the fractional conversion of methane is 0.9 (i.e. 90% of the incoming methane is consumed), and the fractional yield of formaldehyde is…arrow_forwardA batch process is operated with the following sequence. The feed to the batch process consists of a solution of 500 L of ethanol with 120 mole of A and 120 mole of B. If the temperature of the solution is sufficient, A and B will react to form P (the desired product): A (eth) + B (eth) → P (s) DHreact = − 250 kJ/mol (1) product P is sparingly soluble in ethanol, which helps facilitate its removal from the reaction solution. It can be assumed that the reaction rate is first-order in both the concentration of A (cA ) and B (cB ), and so second-order overall: -r A = k c A cB (2) The batch process consists of the following FOUR steps: Initially, the tank is empty. 1. Fill tank with solution (ethanol/A/B). 50°C (1 hour) Increase temperature of the feed from 20°C to 2. Reaction takes place isothermally at 50°C (4 hours, to give conversion of 50%) 3. Filtration of reaction solution to give product P (2 hours) 4. Drying with hot nitrogen gas followed by the removal of powder product (3…arrow_forward
- P2arrow_forwardA catalyst was created to convert C3H8O into C3H6O through a gas-phase reaction at 450 K and 0.75 bar: C3H8O = C3H6O + H2 The feed is C3H8O and N2 (an inert) at a 1:4 mole ratio. At thermodynamic equilibrium, determine percent conversion of C3H8O. Assuming the reaction proceeds to equilibrium, how many kilograms of C3H8O would be needed to produce 5 kilograms of C3H6O?arrow_forwardA chemical engineer is studying the following reaction: BF 3(aq)+NH3(aq) → BF ,NH3(aq) At the temperature the engineer picks, the equilibrium constant K for this reaction is 1.3. The engineer charges ("fills") three reaction vessels with boron trifluoride and ammonia, and lets the reaction begin. He then measures the composition of the mixture inside each vessel from time to time. His first set of measurements are shown in the table below. Predict the changes in the compositions the engineer should expect next time he measures the compositions. reaction expected change in concentration compound concentration vessel BE3 I decrease (no change) 0.48 M f increase NH3 I decrease (no change) 0.55 M f increase A BF,NH3 f increase I decrease (no change) 1.01 M 0.41 M f increase I decrease (no change) BF, NH3 I decrease (no change) 0.48 M f increase В BF,NH3 f increase I decrease (no change) 1.08 M BF3 I decrease (no change) 1.07 M ↑ increase NH3 I decrease (no change) 1.14 M f increase C…arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





