A 66.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her and to the bridge. The unstretched length of the cord is 12.0 m. The jumper reaches reaches the bottom of her motion 35.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 12.0-m free-fall and a 23.0-m section of simple harmonic oscillation. (a) For the free-fall part, what is the appropriate analysis model to describe her motion. O particle under constant angular acceleration O particle under constant acceleration O particle in simple harmonic motion (b) For what time interval is she in free-fall? S (c) For the the simple harmonic oscillation part of the plunge, is the system of the bungee jumper, the spring, and the Earth isolated or non-isolated? O isolated O non-isolated (d) From your response in part (c) find the spring constant of the bungee cord. N/m (e) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper? m below the bridge (f) What is the angular frequency of the oscillation? rad/s

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter12: Oscillatory Motion
Section: Chapter Questions
Problem 22P
icon
Related questions
icon
Concept explainers
Topic Video
Question
A 66.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her and to the bridge. The unstretched length of the cord is 12.0 m. The jumper
reaches reaches the bottom of her motion 35.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and
her arriving at the bottom of her motion. Her overall motion can be separated into an 12.0-m free-fall and a 23.0-m section of simple harmonic oscillation.
(a) For the free-fall part, what is the appropriate analysis model to describe her motion.
O particle under constant angular acceleration
O particle under constant acceleration
O particle in simple harmonic motion
(b) For what time interval is she in free-fall?
(c) For the the simple harmonic oscillation part of the plunge, is the system of the bungee jumper, the spring, and the Earth isolated or non-isolated?
O isolated
O non-isolated
(d) From your response in part (c) find the spring constant of the bungee cord.
N/m
(e) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper?
m below the bridge
(f) What is the angular frequency of the oscillation?
rad/s
Transcribed Image Text:A 66.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her and to the bridge. The unstretched length of the cord is 12.0 m. The jumper reaches reaches the bottom of her motion 35.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 12.0-m free-fall and a 23.0-m section of simple harmonic oscillation. (a) For the free-fall part, what is the appropriate analysis model to describe her motion. O particle under constant angular acceleration O particle under constant acceleration O particle in simple harmonic motion (b) For what time interval is she in free-fall? (c) For the the simple harmonic oscillation part of the plunge, is the system of the bungee jumper, the spring, and the Earth isolated or non-isolated? O isolated O non-isolated (d) From your response in part (c) find the spring constant of the bungee cord. N/m (e) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper? m below the bridge (f) What is the angular frequency of the oscillation? rad/s
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University