a) 5W b) 24 W Q11) The Va for the the circuit shown in Fig. 7 as seen from the terminal a-b can be found as: a)-/220 V d)-110 V e)-/165 V c)-j55 V b)-/330 V Please refer to the circuit of Fig. 8 for the following questions (Q12, Q13 and Q14). Assuming IL(0)-8 A, and V.(0)-40 V. V Q12) Neper frequency a is a) 4 rad/s b) 16 rad/s c) 25 rad/s d) 2 rad/s e) 5 rad/s Q13) Resonant frequency mo is a) 4 rad/s b) 5 rad/s c) 4 rad/s d) 16 rad/s Q14) The voltage v (t=1s) can be found as a) 10.61 V b) 14.61 V c) 16.61 V d) 8.61 V omn ma Fig.7 by the dependent source of Fig. 6 can be determined as c) 96 W d) 192 W e) 48W Q15) For the circuit shown a) 1/2 L b) 4/9 L L m m €4 L m e) 25 rad/s e) 12.61 V ESH Fig. 9 in Fig. 9, the equivalent inductance Leq is: c) 7/4 L d) 5/8 L e) 4/7 L b) R=0.20, L = 0.2 H e) R=222, L=2 H 6 mA Q19) For the circuit shown in Fig. 11, the value of C needed to make the response underdamped with unity damping factor (a = 1) is: = a) 40 mF b) 15 mF c) 26 mF d) 2.5 mF e) 7.5 mF 10 Q 8123 www Fig. 8 2mF 2102 3kQ 5KQ 4mF Fig. 10 Q16) For the circuit shown in Fig. 10, the energy stored in the 4 mF capacitor under de conditions is: a) 32 mJ b) 128 mJ c) 256 mJ d) 8 mJ e) 16 mJ Q17) If v(t)=15 cos(1000t+66°) V and i(t)=2cos(1000t+450°) A, then v(t) leads i(t) by a) 156° b)-24° c) 204° d) 24° e) 66° Q18) Assuming that the input impedance is given as Zin = 1+j1 2 and co-1 rad/s, then the input admittance can be represented as the parallel combination of: a) R=0.22, C=0.2 F c) R=10, L=1H d) R=102, C=1F 12.5 m. 0.5H C www 410 10 mF Fig. 11 The switch in Fig. 12 has been in position A for long time. At t=0, the switch moves to position B. Please refer to the circuit of Fig. 12 for the following questions (30.01 020) vots

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

circuits, pleaseeeee solve questionnn 18

The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of
Fig. 1 for the following questions (Q1, and Q2)
Q1) The time constant t can be found as:
a) 6.67 s b) 0.3 s
c) 10 s
Q2) The current i(t) at t- Im s is:
a) 2.02 A b) 6 A
c) 4.02 A
a) 1.23 cos(10t +30°) V
d) 2.25 cos(10t-53.6%) V
d) 0.1 s e) 0.15 s
Fig. 1
Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5)
Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of
vi(t) is:
a) 12.5cos(500t - 0.107°)
d) 12.5 cos(500t + 89.9°)
d) 5.98 A e) 4 A
Q5) The value of the inductance of the j2 02 impedance is:
a) 0.2 H b) 10 H
c) 20 H d)1.6 H
e) 16 H
2cos101 V
Q7) The current in(t) of Fig. 4 can be found as (mA):
2002 -4.0
www
HE
b) 1.23 cos(10t-30%) V
e) 1.79 cos(10t-26.57°) V
Q4) By applying KCL to the node v/(t), the value of the voltage labeled vi(t) is (V):
a) 2.86 cos(10t +77.9°)
b) 2.86 cos(10t-77.9°)
c) 4.1 cos(10t +62.3°)
d) 4.1 cos(10t-62.3°)
e) 3.92 cos(10t +77.9°)
f) 3.92 cos(10t -77.9%)
Q6) Referring to the circuit of Fig. 3, Zen can be determined as:
a) 22+j6 2 b) 18+j62
c) 22-j62 d) 18-j62 e)-18+j6
pa
a)-823.5-j294.1
d)-751.3+j457.7
512
5 cos 10rV
b) 12.5cos(500t+0.107°)
e) 12.5 cos(500t + 0.205°)
10.02
20:2
c) 2.25 cos(10t +53.6%) V
1.79 cos(10t+26.57°) V
1502
1=0
Q9) The complex power absorbed by voltage source is (VA)
b)-751.3-j457. c)-823.5+j294.1
e) 751.3-j457.7
Fig. 2
Fig. 3
Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9)
Q8) The current through the-j10 2 can be found as (Arms)
a) 8.75/19.65*
b) 8.752-19.65*
c) 10.25290*
d) 10.25Z-90°
e) 202-53.26*
f) 20253.26
1.5 H
m
tacos5001 V
c) 12.5cos(500t - 89.9°)
f) 12.5 cos(500t - 0.205°)
100/2
100/0 V ms
1052
0.21
Fig. 4
46
Fig. 5
0.3 mH
720 (2
m
2002
www
10
Transcribed Image Text:The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of Fig. 1 for the following questions (Q1, and Q2) Q1) The time constant t can be found as: a) 6.67 s b) 0.3 s c) 10 s Q2) The current i(t) at t- Im s is: a) 2.02 A b) 6 A c) 4.02 A a) 1.23 cos(10t +30°) V d) 2.25 cos(10t-53.6%) V d) 0.1 s e) 0.15 s Fig. 1 Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5) Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of vi(t) is: a) 12.5cos(500t - 0.107°) d) 12.5 cos(500t + 89.9°) d) 5.98 A e) 4 A Q5) The value of the inductance of the j2 02 impedance is: a) 0.2 H b) 10 H c) 20 H d)1.6 H e) 16 H 2cos101 V Q7) The current in(t) of Fig. 4 can be found as (mA): 2002 -4.0 www HE b) 1.23 cos(10t-30%) V e) 1.79 cos(10t-26.57°) V Q4) By applying KCL to the node v/(t), the value of the voltage labeled vi(t) is (V): a) 2.86 cos(10t +77.9°) b) 2.86 cos(10t-77.9°) c) 4.1 cos(10t +62.3°) d) 4.1 cos(10t-62.3°) e) 3.92 cos(10t +77.9°) f) 3.92 cos(10t -77.9%) Q6) Referring to the circuit of Fig. 3, Zen can be determined as: a) 22+j6 2 b) 18+j62 c) 22-j62 d) 18-j62 e)-18+j6 pa a)-823.5-j294.1 d)-751.3+j457.7 512 5 cos 10rV b) 12.5cos(500t+0.107°) e) 12.5 cos(500t + 0.205°) 10.02 20:2 c) 2.25 cos(10t +53.6%) V 1.79 cos(10t+26.57°) V 1502 1=0 Q9) The complex power absorbed by voltage source is (VA) b)-751.3-j457. c)-823.5+j294.1 e) 751.3-j457.7 Fig. 2 Fig. 3 Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9) Q8) The current through the-j10 2 can be found as (Arms) a) 8.75/19.65* b) 8.752-19.65* c) 10.25290* d) 10.25Z-90° e) 202-53.26* f) 20253.26 1.5 H m tacos5001 V c) 12.5cos(500t - 89.9°) f) 12.5 cos(500t - 0.205°) 100/2 100/0 V ms 1052 0.21 Fig. 4 46 Fig. 5 0.3 mH 720 (2 m 2002 www 10
2A (4)
le
4.8
am
Q12) Neper frequency a is
a) 4 rad/s b) 16 rad/s c) 25 rad/s d) 2 rad/s e) 5 rad/s
Q13) Resonant frequency wo is
a) 4 rad/s b) 5 rad/s
c) 4 rad/s
d) 16 rad/s e) 25 rad/s
Q14) The voltage v (t=1s) can be found as
a) 10.61 V b) 14.61 V c) 16.61 V d) 8.61 V e) 12.61 V
a) R=0.22, C=0.2 F
d) R=192, C=1F
m
1.92 (2
34
L
m
L
Fig. 6
Fig.7
Q10) The average power supplied by the dependent source of Fig. 6 can be determined as
a) 5W
b) 24 W
c) 96 W
d) 192 W
c) 48W
Q11) The Va for the the circuit shown in Fig. 7 as seen from the terminal a-b can be found as:
a)-/220 V
d)-110 V )-165 V
b)-/330 V
c)-j55 V
Please refer to the circuit of Fig. 8 for the following questions (Q12, Q13 and Q14). Assuming
it(0)-8 A, and V.(0)-40 V.
te
T
1.61, 80
30
34
L
m
1520 A
Z
Fig. 9
Q15) For the circuit shown in Fig. 9, the equivalent inductance Leq is:
a) 1/2 L
d) 5/8 L e) 4/7 L
b) 4/9 L
c) 7/4 L
Q19) For the circuit shown in Fig. 11, the value of C needed to
make the response underdamped with unity damping factor (a
= 1) is:
SH
6 MA
24 V +
L
3k0z
www
492
-NN
202
4149
ΣΕΩΣ
1022
t=0
3kQ
Fig. 8
2mF
HF
210
ww
330
455
+
Fig. 10
SkΩ Σ
4 m²
Q16) For the circuit shown in Fig. 10, the energy stored in the 4 mF capacitor under de conditions is:
a) 32 mJ
d) 8 mJ e) 16 mJ
b) 128 mJ
c) 256 mJ
Q17) If v(t)=15 cos(1000t+66°) V and i(t)-2cos(1000t+450°) A, then v(t) leads i(t) by
a) 156°
b) 0-24°
c) 204°
d) 24°
e) 66°
Q18) Assuming that the input impedance is given as Zin= 1+j1 22 and o-1 rad/s, then the input
admittance can be represented as the parallel combination of:
b) R=0.2 02, L=0.2 H
e) R=202, L=2H
c) R=10, L=1H
100 0.5H C= 10 mF
Fig. 12
a) 40 mF b) 15 mF c) 26 mF d) 2.5 mF e) 7.5 mF
The switch in Fig. 12 has been in position A for long time. At t=0, the switch moves to position B.
Please refer to the circuit of Fig. 12 for the following questions (Q20, Q21 and Q22)
Fig. 11
Q20) v(0) can be found as:
d) 15 V
e) 24 V
a)30 V b) 12.5 V c) 9V
Q21) v(co) can be found as:
a) 24 V b)30 V c) 12.5 V d) 9V
Q22) The voltage v(t) at t = 1 s is:
b)24.9 V c) 30 V
e) 15 V
a) 20.9 V
d) 39.1 V
e) 27.97 V
B
04
f
12.5 m.
9.51,
4kQ
www
P0.5 mF
b
410
30 V
Transcribed Image Text:2A (4) le 4.8 am Q12) Neper frequency a is a) 4 rad/s b) 16 rad/s c) 25 rad/s d) 2 rad/s e) 5 rad/s Q13) Resonant frequency wo is a) 4 rad/s b) 5 rad/s c) 4 rad/s d) 16 rad/s e) 25 rad/s Q14) The voltage v (t=1s) can be found as a) 10.61 V b) 14.61 V c) 16.61 V d) 8.61 V e) 12.61 V a) R=0.22, C=0.2 F d) R=192, C=1F m 1.92 (2 34 L m L Fig. 6 Fig.7 Q10) The average power supplied by the dependent source of Fig. 6 can be determined as a) 5W b) 24 W c) 96 W d) 192 W c) 48W Q11) The Va for the the circuit shown in Fig. 7 as seen from the terminal a-b can be found as: a)-/220 V d)-110 V )-165 V b)-/330 V c)-j55 V Please refer to the circuit of Fig. 8 for the following questions (Q12, Q13 and Q14). Assuming it(0)-8 A, and V.(0)-40 V. te T 1.61, 80 30 34 L m 1520 A Z Fig. 9 Q15) For the circuit shown in Fig. 9, the equivalent inductance Leq is: a) 1/2 L d) 5/8 L e) 4/7 L b) 4/9 L c) 7/4 L Q19) For the circuit shown in Fig. 11, the value of C needed to make the response underdamped with unity damping factor (a = 1) is: SH 6 MA 24 V + L 3k0z www 492 -NN 202 4149 ΣΕΩΣ 1022 t=0 3kQ Fig. 8 2mF HF 210 ww 330 455 + Fig. 10 SkΩ Σ 4 m² Q16) For the circuit shown in Fig. 10, the energy stored in the 4 mF capacitor under de conditions is: a) 32 mJ d) 8 mJ e) 16 mJ b) 128 mJ c) 256 mJ Q17) If v(t)=15 cos(1000t+66°) V and i(t)-2cos(1000t+450°) A, then v(t) leads i(t) by a) 156° b) 0-24° c) 204° d) 24° e) 66° Q18) Assuming that the input impedance is given as Zin= 1+j1 22 and o-1 rad/s, then the input admittance can be represented as the parallel combination of: b) R=0.2 02, L=0.2 H e) R=202, L=2H c) R=10, L=1H 100 0.5H C= 10 mF Fig. 12 a) 40 mF b) 15 mF c) 26 mF d) 2.5 mF e) 7.5 mF The switch in Fig. 12 has been in position A for long time. At t=0, the switch moves to position B. Please refer to the circuit of Fig. 12 for the following questions (Q20, Q21 and Q22) Fig. 11 Q20) v(0) can be found as: d) 15 V e) 24 V a)30 V b) 12.5 V c) 9V Q21) v(co) can be found as: a) 24 V b)30 V c) 12.5 V d) 9V Q22) The voltage v(t) at t = 1 s is: b)24.9 V c) 30 V e) 15 V a) 20.9 V d) 39.1 V e) 27.97 V B 04 f 12.5 m. 9.51, 4kQ www P0.5 mF b 410 30 V
Expert Solution
Step 1

This is a problem of circuit.

The solution is given in the next step 

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Multistage amplifier
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,