
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:A5 lbf weight is suspended froma vertical spring having a stiffness k = 50 lbf/ft. An impressed force
F = 0.25 sin 8t lbę where t is in seconds is acting on the weight. Determine the equation of motion of
the weight when it is pulled down 3 inches from the equilibrium position and released from rest.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (5) The stretched spring length of the spring at the state 2 is _______(m) (two decimal places) (6) The elastic potential energy the state 2 is ___ (N·m ) (two decimal places) (7) The instantaneous center of zero velocity (IC) is (8) The mass moment of inertial about the mass center G is IG =_________(kg·m2 ) (two decimal places)arrow_forwardThe slender 8-kg bar AB is horizontal and at rest. The spring has an unstretched length sọ of 1 m and a spring constant of 15 N/m. the length of the bar AB is l1.Sm Find the angular velocity when e - 45° when the bar has rotate clockwise - 45° after being released. Give your answer with 2 decimals and include the signarrow_forward4. A uniform disc of mass m = 3 kg and radius R= 0.5 may roll without slip on the 30 degree incline shown. An elastic spring of stiffness k= 100 newtons/meter is connected to the center C of the disc. Initially, the disc is held in place in the position shown, with the spring neither stretched nor compressed and with the disc at rest. At t = 0 the disc is released and is subjected to a constant force of Fo = 30 newtons along the incline. Determine the maximum speed achieved by the disc center C as the disc moves up the incline. For gravity use g = 10 m/sec². (note: initially the constant force Fo will be greater than the forces exerted by the spring and by gravity, and the disc will accelerate up the incline; but there will come a distance x along the incline after which the spring force + gravity will overtake the force Fo, and the disc will then decelerate). gravity Fo= 30 N 30° no frictionarrow_forward
- Figure shows a system of cylinder (m = 55 kg) and a load (m = 62 kg) connected through a rope. The system is released from rest and the load L moves along the inclined surface. The kinetic coefficient of friction between the load and the inclined surface is 0.22. The radius of gyration of the cylinder is 0.8 m. Take d1 = 0.5 m, d2 = 1.4 m, and a = 66°. Determine the angular velocity of the cylinder after the load L slides 1.6 m on the inclined surface. d2 d1 C The angular velocity of the cylinder is, [rad/s].arrow_forwardPravinbhaiarrow_forward3. A 5-kg crate is released from rest at Point A of a 20-kg ramp which is inclined at 40 degrees as shown in the figure below. The lengths of the ramp is 2 m. The interface between the ramp and the ground can be assumed to be frictionless. Use Newton's 2nd Law and the definition of the center of mass to determine the horizontal distance that the ramp has moved when the crate reaches Point B. Neglect the size of the crate. Does your answer depend on the frictional force between the crate and the ramp? e Sarrow_forward
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (8) The mass moment of inertial about the mass center G is IG =_________(kg·m2 ) (two decimal places)arrow_forward! Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Two uniform cylinders, each of mass m = 7.5 kg and radius r= 125 mm, are connected by a belt as shown. The system is released from rest when t = 0. B Determine the tension in the portion of belt connecting the two cylinders. The tension in the portion of belt connecting the two cylinders is P=[ N.arrow_forwardDynmaic i need help solving the second partarrow_forward
- Please and thankarrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. Ignore the spring's mass. (5) At state 2, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places) (6) The elastic potential energy of the spring at the state 2 is_______(N·m) (two decimal places) (7) The instantaneous center of zero velocity (IC) of the wheel at state 1 is (8) The mass moment of inertial of the wheel about its mass center G is IG =_________(kg·m2 ) (two decimal places) (9) The mass moment of inertial of the wheel about its…arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (1) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 1 is___ (two decimal places) (2) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 2 is___ (two decimal places) (3) The stretched spring length of the spring at the state 1 is________(m) (two decimal places) (4) The elastic potential energy at the potion 1 is_______(N·m) (two decimal places) (5) The stretched spring length of the spring at the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY