College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A 4-Kilogram object slides, on a smooth surface, towards the north at a velocity of 5 meters per second. The object hits a fixed pole and is deflected from north to east by an angle of 60° and has a velocity of 5 meters per second. The change in the magnitude of the northward component of the moment of the object is
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a stick of mass, M = 14.0 kg and length, L = 1.60 m hanging vertically initially. A bullet of mass, m = 0.040 kg and speed, v = 70 m/s strikes and embeds itself at the bottom end of the stick. Magnitude of acceleration due to gravity is g = 10 m/s². Note: The moment of inertia of a rod about it's center of mass 1 = ML². You may need to use the parallel axis theorem. Closeup Part B: @max M What is the maximum angle, Omax achieved by the stick (with the bullet embedded in it)? Incorrect 2.17⁰ Correct: 6.97⁰ Incorrect 83° Incorrect 9.87⁰ Incorrect None of the abovearrow_forwardA physical pendulum consists of a vertical board of of mass 6.52 kg, length 195 cm, and width 13 cm hanging from a horizontal, frictionless axle. A bullet of mass 147 g and a purely horizontal speed v impacts the pendulum at the bottom edge of the board. The board then makes a complete circle. (a) If the bullet embedded itself in the board, what is the minimum speed the bullet could have to make this so? 37.41 m/s X (b) If the bullet passed through the board, reducing its speed by 1/5 its original value, what is the minimum speed of the bullet? 35.41 m/s X (c) If the bullet is made of rubber and rebounds elastically, what is the minimum speed the bullet could have? (d) What is the rebound speed of the bullet?arrow_forwardA weather vane initially at rest has a moment of inertia of 0.104 kg · m2 about its axis of rotation. A 68.0 g piece of clay is thrown at the vane and sticks to it at a point 14.0 cm from the axis. The initial velocity of the clay is 27.5 m/s, directed perpendicular to the vane. Find the angular velocity of the weather vane just after it is struck.arrow_forward
- A solid sphere of mass, M = 5.0 kg, and radius, R = 0.100 m is placed on two blocks so that it’s centre of mass lies at the origin as shown on the right. A bullet of mass, m = 0.100 kg, and with an x coordinate of b = 0.04 m strikes the sphere from below with a vertical velocity, v = 65 m/s and embeds in the sphere coming to rest at the location (-b,0) in the diagram below. Since there is no momentum in the horizontal direction, after the bullet hits the sphere , it will rise up to some maximum height and then fall back to its initial position on the two blocks. While the sphere is in the air it will rotate. What is the magnitude of the angle (in degrees) through which the sphere will rotate before it makes contact with the two blocks again?arrow_forwardA spherical satellite of approximately uniform density with radius 4.8 m and mass 215 kg is originally moving with velocity (2600, 0, 0) m/s, and is originally rotating with an angular speed 2 rad/s, in the direction shown in the diagram. A small piece of space junk of mass 6.0 kg is initially moving toward the satellite with velocity (-2200, 0, 0) m/s. The space junk hits the edge of the satellite as shown in the figure below, and moves off with a new velocity ( 1300, 480, 0) m/s. Both before and after the collision, the rotation of the space junk is negligible. V3 L Part 1 Ux = Uy = @1 (a) Just after the collision, what are the components of the center-of-mass velocity of the satellite (v, and vy) and its rotational speed w? (For Ux, enter your answer to at least four significant figures.) Part 2 Mi @= i i Save for Later i M, R, 1 V2 m m/s m/s rad/s (b) Calculate the rise in the internal energy of the satellite and space junk combined. J Attempts: 0 of 10 used Submit Answerarrow_forwardA cue ball travelling at 0.785 m/s [270°] strikes a stationary five-ball, causing it to move at 0.601 m/s [230°]. The cue ball and the five-ball each have a mass of 160 g. What will be the velocity of the cue ball immediately after impact? Ignore frictional and rotational effects.arrow_forward
- A rod of mass M = 3.25 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 65 g, moving with speed v = 5.25 m/s, strikes the rod at angle θ = 51° from the normal at a distance D = 2/3 L, where L = 1.3 m, from the point of rotation and sticks to the rod after the collision. 1. What is the angular speed ωf of the system immediately after the collision, in radians per second?arrow_forwardA puck of mass m₂ = 72.0 g and radius r₁ = 3.70 cm glides across an air table at a speed of = 1.50 m/s as shown in Figure a. It makes a glancing collision with a second puck of radius r₂ = 6.00 cm and mass m₂ = 105 g (initially at rest) such that their rims just touch. Because their rims are coated with instant-acting glue, the pucks stick together and rotate after the collision (Figure b). m₁ m₂ b (a) What is the magnitude of the angular momentum of the system relative to the center of mass? kg. m²/s (b) What is the angular speed about the center of mass? rad/sarrow_forwardA hammer is made of a solid sphere and a solid rod of negligible mass attached to the sphere. The radius of the sphere is R=25.0 cm and its mass is m=0.100 kg. The distance from the center of the sphere to the pivot is l=1.00 m. The hammer is released from it is initial position at the angle ϕ=30° with the vertical direction (see Figure below). Find the velocity of its center of mass at the lowest point. The moment of inertia of a solid sphere is 2mR2/5 about the axis through any diameter.arrow_forward
- Ice skaters often end their performances with spin turns, where they spin very fast about their center of mass with their arms folded in and legs together. Upon ending, their arms extend outward, proclaiming their finish. Not quite as noticeably, one leg goes out as well. Suppose that the moment of inertia of a skater with arms out and one leg extended is 3.2 kg ⋅ m2 and for arms and legs in is 0.80 kg ⋅ m2. If she starts out spinning at 5.0 rev/s, what is her angular speed (in rev/s) when her arms and one leg open outward?arrow_forwardThe position vector of a particle of mass 1.0 kg as a function of time is given by F= (6f + 10 tj ) m where 7 is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time (in kg m2/s)? Option 1 Option 2 Option 3 Option 4 Option 5 (20 tj) (120 tj) (60 tj) (30 tj) (240 tj)arrow_forwardA physical pendulum consists of a vertical board of of mass 5.8 kg, length 172 cm, and width 5 cm hanging from a horizontal, frictionless axle. A bullet of mass 145 g and a purely horizontal speed v impacts the pendulum at the bottom edge of the board. The board then makes a complete circle. (a) If the bullet embedded itself in the board, what is the minimum speed the bullet could have to make this so? (b) If the bullet passed through the board, reducing its speed by 1/5 its original value, what is the minimum speed of the bullet? (c) If the bullet is made of rubber and rebounds elastically, what is the minimum speed the bullet could have? (d) What is the rebound speed of the bullet?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON