A 13,129-lb truck enters an emergency exit ramp at a speed of 112.4 ft/s. It travels for 7.9 s before its speed is reduced to 24.5 ft/s. Determine the braking force by the truck if the acceleration is constant. (Use Impulse-Momentum concepts.)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
### Physics Problem on Impulse-Momentum and Braking Force Calculation

**Problem Statement:**
A 13,129-pound truck enters an emergency exit ramp at an initial speed of 112.4 feet per second (ft/s). It travels for 7.9 seconds before its speed is reduced to 24.5 ft/s. The task is to determine the braking force exerted by the truck, assuming the acceleration is constant. This problem uses the Impulse-Momentum concepts.

**Assumptions:**
- The angle \( \theta \) of the ramp is 21.4 degrees.

**Objective:**
- Calculate the braking force (in pounds of force, lbf) to two decimal places.

**Diagram Description:**
- The diagram illustrates a truck labeled "Rail Lines Cross Country Movers" ascending an inclined ramp.
- The initial velocity \( v_0 \) is shown as a green arrow pointing in the direction of the ramp's slope.
- The ramp has an indicated angle \( \theta \) with the horizontal plane, specified as 21.4 degrees.

**Steps for Calculation:**
1. **Extract Given Data:**
    - Mass of the truck: 13,129 lb
    - Initial velocity (\( v_0 \)): 112.4 ft/s
    - Final velocity (\( v_f \)): 24.5 ft/s
    - Time (\( t \)): 7.9 s
    - Ramp angle (\( \theta \)): 21.4 degrees

2. **Use Impulse-Momentum Theorem:**
    - Impulse (\( J \)) is the change in momentum (\( \Delta p \)) of the truck.
    - \( J = \Delta p = m \cdot \Delta v \)
    - Impulse is also equal to the braking force (\( F \)) times the time (\( t \)): \( J = F \cdot t \)

3. **Calculate Change in Velocity:**
    - \( \Delta v = v_f - v_0 = 24.5 \text{ ft/s} - 112.4 \text{ ft/s} = -87.9 \text{ ft/s} \)

4. **Calculate Momentum Change:**
    - Since \( m \) is given in pounds (force), ensure units are consistent.
    - Using \( m \) directly (assuming weight and mass conversion factors
Transcribed Image Text:### Physics Problem on Impulse-Momentum and Braking Force Calculation **Problem Statement:** A 13,129-pound truck enters an emergency exit ramp at an initial speed of 112.4 feet per second (ft/s). It travels for 7.9 seconds before its speed is reduced to 24.5 ft/s. The task is to determine the braking force exerted by the truck, assuming the acceleration is constant. This problem uses the Impulse-Momentum concepts. **Assumptions:** - The angle \( \theta \) of the ramp is 21.4 degrees. **Objective:** - Calculate the braking force (in pounds of force, lbf) to two decimal places. **Diagram Description:** - The diagram illustrates a truck labeled "Rail Lines Cross Country Movers" ascending an inclined ramp. - The initial velocity \( v_0 \) is shown as a green arrow pointing in the direction of the ramp's slope. - The ramp has an indicated angle \( \theta \) with the horizontal plane, specified as 21.4 degrees. **Steps for Calculation:** 1. **Extract Given Data:** - Mass of the truck: 13,129 lb - Initial velocity (\( v_0 \)): 112.4 ft/s - Final velocity (\( v_f \)): 24.5 ft/s - Time (\( t \)): 7.9 s - Ramp angle (\( \theta \)): 21.4 degrees 2. **Use Impulse-Momentum Theorem:** - Impulse (\( J \)) is the change in momentum (\( \Delta p \)) of the truck. - \( J = \Delta p = m \cdot \Delta v \) - Impulse is also equal to the braking force (\( F \)) times the time (\( t \)): \( J = F \cdot t \) 3. **Calculate Change in Velocity:** - \( \Delta v = v_f - v_0 = 24.5 \text{ ft/s} - 112.4 \text{ ft/s} = -87.9 \text{ ft/s} \) 4. **Calculate Momentum Change:** - Since \( m \) is given in pounds (force), ensure units are consistent. - Using \( m \) directly (assuming weight and mass conversion factors
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Clutches, Brakes, Couplings and Flywheels
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY