Database System Concepts
Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question
Number 6,7,8,10,12,13
**Exercises for Chapter 5**

**A. Prove the following statements with contrapositive proof.** *(In each case, think about how a direct proof would work. In most cases contrapositive is easier.)*

1. Suppose \( n \in \mathbb{Z} \). If \( n^2 \) is even, then \( n \) is even.

2. Suppose \( n \in \mathbb{Z} \). If \( n^2 \) is odd, then \( n \) is odd.

3. Suppose \( a, b \in \mathbb{Z} \). If \( a^2(b^2 - 2b) \) is odd, then \( a \) and \( b \) are odd.

4. Suppose \( a, b, c \in \mathbb{Z} \). If \( a \) does not divide \( bc \), then \( a \) does not divide \( b \).

5. Suppose \( x \in \mathbb{R} \). If \( x^2 + 5x < 0 \) then \( x < 0 \).

6. Suppose \( x \in \mathbb{R} \). If \( x^3 - x > 0 \) then \( x > 1 \).

7. Suppose \( a, b \in \mathbb{Z} \). If both \( ab \) and \( a + b \) are even, then both \( a \) and \( b \) are even.

8. Suppose \( x \in \mathbb{R} \). If \( x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 \geq 0 \), then \( x \geq 0 \).

9. Suppose \( n \in \mathbb{Z} \). If 3 ∤ \( n^2 \), then 3 ∤ \( n \).

10. Suppose \( x, y, z \in \mathbb{Z} \) and \( x \neq 0 \). If \( x \mid yz \), then \( x \nmid y \) and \( x \nmid z \).

11. Suppose \( x, y \in \mathbb{Z} \). If \( x^2(y + 3) \)
expand button
Transcribed Image Text:**Exercises for Chapter 5** **A. Prove the following statements with contrapositive proof.** *(In each case, think about how a direct proof would work. In most cases contrapositive is easier.)* 1. Suppose \( n \in \mathbb{Z} \). If \( n^2 \) is even, then \( n \) is even. 2. Suppose \( n \in \mathbb{Z} \). If \( n^2 \) is odd, then \( n \) is odd. 3. Suppose \( a, b \in \mathbb{Z} \). If \( a^2(b^2 - 2b) \) is odd, then \( a \) and \( b \) are odd. 4. Suppose \( a, b, c \in \mathbb{Z} \). If \( a \) does not divide \( bc \), then \( a \) does not divide \( b \). 5. Suppose \( x \in \mathbb{R} \). If \( x^2 + 5x < 0 \) then \( x < 0 \). 6. Suppose \( x \in \mathbb{R} \). If \( x^3 - x > 0 \) then \( x > 1 \). 7. Suppose \( a, b \in \mathbb{Z} \). If both \( ab \) and \( a + b \) are even, then both \( a \) and \( b \) are even. 8. Suppose \( x \in \mathbb{R} \). If \( x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 \geq 0 \), then \( x \geq 0 \). 9. Suppose \( n \in \mathbb{Z} \). If 3 ∤ \( n^2 \), then 3 ∤ \( n \). 10. Suppose \( x, y, z \in \mathbb{Z} \) and \( x \neq 0 \). If \( x \mid yz \), then \( x \nmid y \) and \( x \nmid z \). 11. Suppose \( x, y \in \mathbb{Z} \). If \( x^2(y + 3) \)
Expert Solution
Check Mark
Step 1

You have asked us to solve 6,7,8,10,12 and 13. As per the guidelines, we have given answers for 6,7 and 8. You can find the solution in step 2.

Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education