
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question

(Note: Insert the image of the transistor circuit here)
#### Step-by-Step Solution
1. **Solve for \( I_B \) (Base Current):**
Using the formula for base current,
\[
I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta_{DC} \cdot R_E)}
\]
Assuming \( V_{BE} \approx 0.7V \) (typical for silicon transistors),
\[
I_B = \frac{12V - 0.7V}{390k\Omega} \approx \frac{11.3V}{390k\Omega} \approx 29 \mu A
\]
2. **Solve for \( I_C \) (Collector Current):**
Using the current gain relationship,
\[
I_C = \beta_{DC} \cdot I_B
\]
\[
I_C = 150 \cdot 29 \mu A \approx 4.35 mA
\]
3. **Solve for \( V_{CE} \) (Collector-Emitter Voltage):**
Using the formula for \( V_{CE} \),
\[
V_{CE} = V_{CC} - (I_C \cdot R_C)
\]
\[
V_{CE} = 12V - (4.35mA \cdot 1.5k\Omega) \approx 12V - 6.525V \approx 5.475V
\]
####](https://content.bartleby.com/qna-images/question/22d8487a-aee7-41d5-95a0-1e0950421a9b/ae3c48fe-2825-4c97-ae1a-d1664726752a/3oflas_thumbnail.jpeg)
Transcribed Image Text:### Transistor Biasing Circuit Analysis
#### Problem Statement
In the figure below, solve for \( I_B \), \( I_C \), and \( V_{CE} \). Also, construct a DC load line showing the values of \( I_{C(sat)} \), \( V_{CE(off)} \), \( I_{CQ} \), and \( V_{CEQ} \).
#### Circuit Diagram
The given circuit diagram is as follows:
- The supply voltage \( V_{CC} \) is 12 V.
- The base resistor \( R_B \) is 390 kΩ.
- The collector resistor \( R_C \) is 1.5 kΩ.
- The current gain \( \beta_{DC} \) is 150.

(Note: Insert the image of the transistor circuit here)
#### Step-by-Step Solution
1. **Solve for \( I_B \) (Base Current):**
Using the formula for base current,
\[
I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta_{DC} \cdot R_E)}
\]
Assuming \( V_{BE} \approx 0.7V \) (typical for silicon transistors),
\[
I_B = \frac{12V - 0.7V}{390k\Omega} \approx \frac{11.3V}{390k\Omega} \approx 29 \mu A
\]
2. **Solve for \( I_C \) (Collector Current):**
Using the current gain relationship,
\[
I_C = \beta_{DC} \cdot I_B
\]
\[
I_C = 150 \cdot 29 \mu A \approx 4.35 mA
\]
3. **Solve for \( V_{CE} \) (Collector-Emitter Voltage):**
Using the formula for \( V_{CE} \),
\[
V_{CE} = V_{CC} - (I_C \cdot R_C)
\]
\[
V_{CE} = 12V - (4.35mA \cdot 1.5k\Omega) \approx 12V - 6.525V \approx 5.475V
\]
####
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6. Current mirror All MOSFETS in the circuit below have V, = 1 V and k, = 2 mA/V² (A = 0). Q1 and Q2 form a current mirror that supplics drain current to Q3. Calculate Ip and Vout: + 5 V 8 k Q3 o Vout Q1 Q2 -5 varrow_forward24 3 Vsige VGG I RO RS VAP Vout Rout Consider the mosFET Circuit Shown In which &p=3-3 kuz Ac and Rs=4702. The Dc Sources VOD and VGG Set gm = 15 MATU Determine the Overall Voltage gan, Cav Determine the 2 Determine the F3 Out Put resistance Input resistancearrow_forwardNMOS TRANSISTOR( NEED ONLY HANDWRITTEN SOLUTION PLEASE OTHERWISE DOWNVOTE).arrow_forward
- In an emitter-biased transistor circuit, we have collector source voltage V CC = 15 V, collector resistance RC = 3.5 kOhm, emitter voltage V_E = 4.3 V and emitter current LE = 2.1 mA. If the current gain is 150, what is the difference in emitter-collector voltage V_CE when we calculate it including the gain factor vs when it is calculated by assuming collector current LC = LE? Select one: O a. 3.35 V O b. 3.40 V OC 0.05 V O dovarrow_forwardplease solvearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,