Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
Bartleby Related Questions Icon

Related questions

Question
i need the answer quickly
5. A refrigerator with tetrafluoroethane as refrigerant operates with an evaporation
temperature of 247.15 K (-26°C) and a condensation temperature of 300.15 K
(27°C). Saturated liquid refrigerant from the condenser flows through an expansion
valve into the evaporator, from which it emerges as saturated vapor.
(a) For a cooling rate of 5.275 kW, what is the circulation rate of the refrigerant?
(b) By how much would the circulation rate be reduced if the throttle valve were
replaced by a turbine in which the refrigerant expands isentropically?
(c) Suppose the cycle of (a) is modified by the inclusion of a countercurrent heat
exchanger between the condenser and the throttle valve in which heat is transferred
to vapor returning from the evaporator. If liquid from the condenser enters the
exchanger at 300.15 K (27°C) and if vapor from the evaporator enters the
exchanger at 247.15 K (-26°C) and leaves at 294.15 K (21°C), what is the
circulation rate of the refrigerant?
expand button
Transcribed Image Text:5. A refrigerator with tetrafluoroethane as refrigerant operates with an evaporation temperature of 247.15 K (-26°C) and a condensation temperature of 300.15 K (27°C). Saturated liquid refrigerant from the condenser flows through an expansion valve into the evaporator, from which it emerges as saturated vapor. (a) For a cooling rate of 5.275 kW, what is the circulation rate of the refrigerant? (b) By how much would the circulation rate be reduced if the throttle valve were replaced by a turbine in which the refrigerant expands isentropically? (c) Suppose the cycle of (a) is modified by the inclusion of a countercurrent heat exchanger between the condenser and the throttle valve in which heat is transferred to vapor returning from the evaporator. If liquid from the condenser enters the exchanger at 300.15 K (27°C) and if vapor from the evaporator enters the exchanger at 247.15 K (-26°C) and leaves at 294.15 K (21°C), what is the circulation rate of the refrigerant?
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY