Polynomial coefficients: • Position vector magnitude: solve a = 4(A1/Ao)²+4(A1/Ao)L-R - ||R||² b=-8µ(A/Ao)(A2/Ao)+4µ(A2/Ao)L-R c=-4μ²(A2/Ao)² to obtain the applicable real root ||r||. (=r³+ar6+b||r||³+c • Range and range-rate: p -2(A/Ao)-2u||||³ (A2/Ao) p=-(A3/Ao) - µ||||³ (A4/A0) • Object position and velocity: r=R+PL r=R+PL+PL Output: 2 and v₂ =ŕ 3.1.3.1 Algorithm for Laplace's Method . Given: ti, Li, and R; for i€ {1,2,3} and ⚫ Observer position at middle observation: R = R₂ . Observer velocity and acceleration: R-XR and R= × R Lagrange interpolation coefficients: $1 12-13 (11-12) (11-13)' 212-11-13 $2= " $3= 2 (12-11) (12-13) 2 12-11 (13-11)(13-12) 2 S4= $5 (11-12) (11-13) " (12-11)(12-13) $6 " (13-11)(13-12) • Line-of-sight and associated rates: ⚫ Determinants: L-L2 L=S₁L₁+82L2+$3L3 L=84L1+55L2+8643 Ao 2|| L| L| | || = ALL R || A2 L L R || = A3|L|R| L || ALR £ ||
Polynomial coefficients: • Position vector magnitude: solve a = 4(A1/Ao)²+4(A1/Ao)L-R - ||R||² b=-8µ(A/Ao)(A2/Ao)+4µ(A2/Ao)L-R c=-4μ²(A2/Ao)² to obtain the applicable real root ||r||. (=r³+ar6+b||r||³+c • Range and range-rate: p -2(A/Ao)-2u||||³ (A2/Ao) p=-(A3/Ao) - µ||||³ (A4/A0) • Object position and velocity: r=R+PL r=R+PL+PL Output: 2 and v₂ =ŕ 3.1.3.1 Algorithm for Laplace's Method . Given: ti, Li, and R; for i€ {1,2,3} and ⚫ Observer position at middle observation: R = R₂ . Observer velocity and acceleration: R-XR and R= × R Lagrange interpolation coefficients: $1 12-13 (11-12) (11-13)' 212-11-13 $2= " $3= 2 (12-11) (12-13) 2 12-11 (13-11)(13-12) 2 S4= $5 (11-12) (11-13) " (12-11)(12-13) $6 " (13-11)(13-12) • Line-of-sight and associated rates: ⚫ Determinants: L-L2 L=S₁L₁+82L2+$3L3 L=84L1+55L2+8643 Ao 2|| L| L| | || = ALL R || A2 L L R || = A3|L|R| L || ALR £ ||
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Can you help me code the algorithm into MATLAB? The delta zero, delta one and so forth are equal to the determinats of a 3x3 matrix made of the three
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY