Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Bartleby Related Questions Icon

Related questions

Question

Task 2. Answer only 3

TASK# 2. Solve problems involving heat transfer by radiation processes.
Problem Solving
Instructions: Analyze and solve the following problems. Enclose your final answer
in a box.
1. The inner wall of a thermos bottle is at -10°C while the outer at 99°F. The space
between the walls is evacuated and the walls are silvered so the emissivity is
reduced to 0.10. If each wall has an area of 705 cm², how much energy is
transformed by radiation between walls each second?
2. A steam pipe having a surface temperature of 250°C passes through a room where
the temperature is 27°C. The outside diameter of the pipe is 100 mm and emissivity
factor is 0.8. Calculate the radiated heat loss for 3 m pipe length.
3.
How many watts will be radiated from a spherical black body 15 cm in diameter at a
temperature of 800°C?
Calculate the radiation in watts per square centimeter from a block of copper at
302°F and at 1732°F. The oxidized copper surface radiates at 58% the rate of a black
body.
4.
5. A small sphere has a radius of 3.50 cm and is maintained at a temperature of 325°C.
Assuming it to be a black body surrounded by empty space, how much energy does
it radiate each second?
expand button
Transcribed Image Text:TASK# 2. Solve problems involving heat transfer by radiation processes. Problem Solving Instructions: Analyze and solve the following problems. Enclose your final answer in a box. 1. The inner wall of a thermos bottle is at -10°C while the outer at 99°F. The space between the walls is evacuated and the walls are silvered so the emissivity is reduced to 0.10. If each wall has an area of 705 cm², how much energy is transformed by radiation between walls each second? 2. A steam pipe having a surface temperature of 250°C passes through a room where the temperature is 27°C. The outside diameter of the pipe is 100 mm and emissivity factor is 0.8. Calculate the radiated heat loss for 3 m pipe length. 3. How many watts will be radiated from a spherical black body 15 cm in diameter at a temperature of 800°C? Calculate the radiation in watts per square centimeter from a block of copper at 302°F and at 1732°F. The oxidized copper surface radiates at 58% the rate of a black body. 4. 5. A small sphere has a radius of 3.50 cm and is maintained at a temperature of 325°C. Assuming it to be a black body surrounded by empty space, how much energy does it radiate each second?
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The