3. As shown in the figure on the right, two small spheres are hanging from the ceiling with massless strings of equal length 1 = 0.50m. The sphere on the left is carrying electric charge of Q₁ = 0.20nC, the sphere on the right is carrying electric charge of Q₂ = 0.40nC. Both spheres have the same mass m = 1.2gram. The system is placed near the surface of the Earth. (a) Draw the free body diagrams for both spheres and explain why the hanging angles of both spheres are equal (i.e., 0₁ = 0₂). (b) Calculate the hanging angle of the two spheres. Note that the angle is so small that you can safely use the small angle approximation (sin tan ≈ 0, when 0 is expressed in radians). l 18

icon
Related questions
Question
3. As shown in the figure on the right, two small spheres are hanging from
the ceiling with massless strings of equal length 1 = 0.50m. The sphere on the
left is carrying electric charge of Q₁ = 0.20nC, the sphere on the right is
carrying electric charge of Q₂ = 0.40nC. Both spheres have the same mass
m = 1.2gram. The system is placed near the surface of the Earth.
(a) Draw the free body diagrams for both spheres and explain why the
hanging angles of both spheres are equal (i.e., 0₁ = 0₂).
(b) Calculate the hanging angle of the two spheres. Note that the angle is
so small that you can safely use the small angle approximation (sin ≈
tan 0 ≈ 0, when 0 is expressed in radians).
Transcribed Image Text:3. As shown in the figure on the right, two small spheres are hanging from the ceiling with massless strings of equal length 1 = 0.50m. The sphere on the left is carrying electric charge of Q₁ = 0.20nC, the sphere on the right is carrying electric charge of Q₂ = 0.40nC. Both spheres have the same mass m = 1.2gram. The system is placed near the surface of the Earth. (a) Draw the free body diagrams for both spheres and explain why the hanging angles of both spheres are equal (i.e., 0₁ = 0₂). (b) Calculate the hanging angle of the two spheres. Note that the angle is so small that you can safely use the small angle approximation (sin ≈ tan 0 ≈ 0, when 0 is expressed in radians).
Expert Solution
steps

Step by step

Solved in 4 steps with 16 images

Blurred answer