2 Li(s) + Ag:Croa(s)→ Li:Croa(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: AgCl(s) + Ag(s) + C (ay) Ag(CN)₂(aq) + — Ag(s) + 2CN (ap) Ag-Cros)+22 Ag(s) + CO2(a) Agl(s) + Ag(s) + 1(a) Ag(S₂0₂):¹(aq) + Ag(s) +25,0} (ay) Al³+ (aq) + 3e Al(s) -1.66 210,(a) + 12 11(a) + 10 (1) + 6H₂O(1) H₂AsO(a) + 2H(aq) + 2H₂AsO(a) + H₂O(1) +0.56 K"(aq) +eK() Ba(ay)+26" Ba(1) -2.90 (a)+L() +0.85 +0.54 +1.20 -2.92 +0.32 Mg(a)+2e-Mg(s) BO(a) + 2H(aq) + 3e Bi(s) + H₂O(1) Be()+22(a) -3.05 -2.37 -1.18 +1.07 Mn(a)+2e-Mn(s) 2BrO, (a) + 12H(aq) + 10e" Bey(1) + 6H₂O(1) 200) +211(a) + 2€°— H₂C₂O₂(a) C₂²" (ay)+26-C(1) +1.23 +1.51 +1.52 MnO()+41(a)+2M² (aq) + 211₂0(1 -0.49 Mn0, "(a) +SH(a) + SeMn(a) + 4H₂O(7) -2.87 Mn0, (a) + 2H₂O(1) + 3eMnO(s) + 4OH(aq) +0.59 -0.40 HNO(a)+ H(a)+eNO) + H₂O() +1.61 N)+ 4H₂O()+440H(a) + N₂) +1.36 N)+SH(aq) + 4e²N₂l₂" (a) Ca (ay)+26-24(1) Ce (ap) + Cet" (ap) C6)+26²—2C (af) +1.63 NO₂ (aq) + 411²(aq) + 3€ NO) + 2H₂O(1) +0.89 Na(a)Na(s) 2HC10(aq) + 2H(aq) + 2) + 2H,O(1) C30" (aq) + H₂O(1)+2e-Cr(a) + 2011 (ay) 2010, (a)+12H(aq) + 10e-C₂) + 6H₂O(1) Co² (a) + 2 Co(s) +1.47 Ni(a)+2²(¹) Co² (a) Co² (ap) + C¹(a)+3ea() C¹ (ay)+Cr³(aq) -0.28 0)+41(a)+421,0(1) +1.84 0)+211₂0()+440H(aq) -0.74 0+21(a) + 2H₂O₂(a) -0.41 0)+21(a)+260/61) + 11₂0(1) +1.33 16² (a)+2²(1) -0.13 Po(s) + HSO(a) + 3H(aq) + 2² Co(a)+1411(a)+6e"-20"(a)+71₂0(1) Co(a) + 4H₂O(1) + 3²²— Cu(s) Cu(a) Ca(OH),(s) + SOH(ay) Cu(a) +2e Cu²" (aq) + Cu(1) Cu (aq) + Cul(s) + Cu(s) + (a) Ft) + 2e-21(a) Fe²(a)+2e-Fe(s) Fe²(a) + Fe²(a) Fe(CN)(a) + Fe(CN) (4) 2H(aq) + 2 H₂() +0.22 H₂O(g) + 2H²(aq) + 2e² — 211,0(1) -0.31 Hg() +2²-2Hg(1) +0.45 211g (a)+2²"-₂²" (a) -0.15 g (a)+2²"Hg(¹7) +0.01)+2e-21(a) Pt50)+2H0(1) +1.78 +0.79 +0.92 +0.34 950 (1) + H²(aq) + 2€²— Pb(s) + 150, (a) +0.15 PIC12(aq) + 2e-P(s) + 4CP (ay) +0.52 S(s) + 2H(aq) + 2H₂S() -0.19 1,50(a) + 4 11²(aq) + 4e²S(s) + 3H₂O(1) +2.87 HSO,(aq) + 3H²(aq) + 2 H₂SO₂(aq) + H₂O(1) -0.44 Se(a)+2e-Sn(1) +0.77 Sn(a)+2²³ (4) +0.36 Vo(a) + 2H(a)+VO³(aq) + H₂O(1) 0.00 Zn(a)+2²" Zn(s) -1.16 -0.23 +0.96 -2.71 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76

Principles of Modern Chemistry
8th Edition
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Chapter17: Electrochemistry
Section: Chapter Questions
Problem 76AP
icon
Related questions
Question

PLEASE ANSWER PART D

Heart pacemakers are often powered by lithium-silver chromate "button"
batteries. The overall cell reaction is:
2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s)
(a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode
or the cathode?
(b) Choose the two half-reactions from a table of standard reduction potentials that most
closely approximate the reaction that occur within the battery. What is the standard
voltage generated by a cell operating with these half-reactions?
(c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to
what you've shown me in (b)?
(d) Calculate the voltage at body temperature.
Standard reduction potentials are as below:
Half-Reaction
Agt (aq) + e Ag(s)
AgBr(s) + ¢* * Ag(s) + Br"(aq)
AgCl(s) + e Ag(s) + Cl(aq)
Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq)
AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq)
Agl(s) + e Ag(s) + (aq)
Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq)
Al³+ (aq) + 3e Al(s)
H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1)
Ba²+ (aq) + 2 e Ba(s)
BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1)
Br₂(1) +2 e 2 Br (aq)
2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1)
2 CO₂(g) + 2H(aq) + 2e
H₂C₂O4(aq)
Ca²+ (aq) + 2e
Ca(s)
Cd(s)
Ce³(aq)
Cu²+ (aq) + 2e
Cu²+ (aq) + e
Cu (aq) +
Cd²+ (aq) + 2e
Ce+ (aq) +
Cl₂(g) + 2e- 2 C1 (aq)
2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1)
CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq)
2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1)
Co²+ (aq) + 2e
Co(s)
Cot(aq)
Cost(aq) +ẽ
+1.84 O₂(g) + 2H₂O(l) + 4e¯
Cr³+ (aq) + 3e
Cr(s)
-0.74 O₂(g) + 2H(aq) + 2e →
Cr³+ (aq) + Cr²+ (aq)
-0.41 O₂(g) + 2H*(aq) + 2e
Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s)
CrO2(aq) + 4H₂O(1) + 3e-
-0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e
Cr(OH),(s) + 5OH(aq)
Cu(s)
Cu* (aq)
Cu(s)
Cu(s) + (aq)
Cul(s) +
F₂(g) + 2e2F (aq)
Fe²+ (aq) + 2e
Fe(s)
Fe³+ (aq) + e
Fe²+ (aq)
Fe(CN) (aq) + e Fe(CN),(aq)
2H*(aq) + 2e
E° (V)
Half-Reaction
+0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq)
+0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq)
+0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1)
-0.31 Hg (aq) + 2e-2 Hg(1)
+0.45 2 Hg (aq) + 2e Hg₂+ (aq)
-0.15 Hg2+ (aq) + 2eHg(1)
12₂(s) + 2e ► 21 (aq)
-1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1)
+0.56 K*(aq) + eK(s)
-2.90 Li*(aq) +eLi(s)
+0.01
H₂(g)
+0.32 Mg (aq) + 2e
Mg(s)
+1.07 Mn²(aq) + 2e"- Mn(s)
+1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1)
-0.49
MnO, (aq) + 8H(aq) + Se
Mn² (aq) + 4H₂O(1)
-2.87
-0.40
MnO₂ (aq) + 2H₂O(l) + 3e
MnO₂(s) + 4 OH(aq)
HNO₂(aq) + H(aq) + e NO(g) + H₂O(l)
+1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq)
+1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq)
NO(g) + 2H₂O(1)
+1.63 NO₂ (aq) + 4H(aq) + 3e
+0.89 Na (aq) + e- Na(s)
+1.47
-0.28
Ni²+ (aq) + 2e → Ni(s)
O₂(g) + 4H(aq) + 4e-2 H₂O(1)
4 OH(aq)
H₂O₂(aq)
O₂(g) + H₂O(1)
PbSO4(s) + 2 H₂O(1)
+0.34
+0.15 PIC12(aq) + 2e
+0.52 S(s) + 2H(aq) + 2e
PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq)
Pt(s) + 4 Cl(aq)
H₂S(g)
-0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1)
H₂SO3(aq) + H₂O(1)
+2.87 HSO (aq) + 3 H*(aq) + 2e
-0.44 Sn²(aq) + 2e-Sn(s)
+0.77 Sn (aq) + 2e
Sn²+ (aq)
+0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1)
0.00 Zn²(aq) + 2e-Zn(s)
E°(V)
-0.83
+0.88
+1.78
+0.79
+0.92
+0.85
+0.54
+1.20
-2.92
-3.05
-2.37
-1.18
+1.23
+1.51
+0.59
+1.00
-1.16
-0.23
+0.96
-2.71
-0.28
+1.23
+0.40
+0.68
+2.07
-0.13
+1.69
-0.36
+0.73
+0.14
+0.45
+0.17
-0.14
+0.15
+1.00
-0.76
Transcribed Image Text:Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is: 2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: Half-Reaction Agt (aq) + e Ag(s) AgBr(s) + ¢* * Ag(s) + Br"(aq) AgCl(s) + e Ag(s) + Cl(aq) Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq) AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq) Agl(s) + e Ag(s) + (aq) Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq) Al³+ (aq) + 3e Al(s) H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1) Ba²+ (aq) + 2 e Ba(s) BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1) Br₂(1) +2 e 2 Br (aq) 2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1) 2 CO₂(g) + 2H(aq) + 2e H₂C₂O4(aq) Ca²+ (aq) + 2e Ca(s) Cd(s) Ce³(aq) Cu²+ (aq) + 2e Cu²+ (aq) + e Cu (aq) + Cd²+ (aq) + 2e Ce+ (aq) + Cl₂(g) + 2e- 2 C1 (aq) 2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1) CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq) 2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1) Co²+ (aq) + 2e Co(s) Cot(aq) Cost(aq) +ẽ +1.84 O₂(g) + 2H₂O(l) + 4e¯ Cr³+ (aq) + 3e Cr(s) -0.74 O₂(g) + 2H(aq) + 2e → Cr³+ (aq) + Cr²+ (aq) -0.41 O₂(g) + 2H*(aq) + 2e Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s) CrO2(aq) + 4H₂O(1) + 3e- -0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e Cr(OH),(s) + 5OH(aq) Cu(s) Cu* (aq) Cu(s) Cu(s) + (aq) Cul(s) + F₂(g) + 2e2F (aq) Fe²+ (aq) + 2e Fe(s) Fe³+ (aq) + e Fe²+ (aq) Fe(CN) (aq) + e Fe(CN),(aq) 2H*(aq) + 2e E° (V) Half-Reaction +0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq) +0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq) +0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1) -0.31 Hg (aq) + 2e-2 Hg(1) +0.45 2 Hg (aq) + 2e Hg₂+ (aq) -0.15 Hg2+ (aq) + 2eHg(1) 12₂(s) + 2e ► 21 (aq) -1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1) +0.56 K*(aq) + eK(s) -2.90 Li*(aq) +eLi(s) +0.01 H₂(g) +0.32 Mg (aq) + 2e Mg(s) +1.07 Mn²(aq) + 2e"- Mn(s) +1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1) -0.49 MnO, (aq) + 8H(aq) + Se Mn² (aq) + 4H₂O(1) -2.87 -0.40 MnO₂ (aq) + 2H₂O(l) + 3e MnO₂(s) + 4 OH(aq) HNO₂(aq) + H(aq) + e NO(g) + H₂O(l) +1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq) +1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq) NO(g) + 2H₂O(1) +1.63 NO₂ (aq) + 4H(aq) + 3e +0.89 Na (aq) + e- Na(s) +1.47 -0.28 Ni²+ (aq) + 2e → Ni(s) O₂(g) + 4H(aq) + 4e-2 H₂O(1) 4 OH(aq) H₂O₂(aq) O₂(g) + H₂O(1) PbSO4(s) + 2 H₂O(1) +0.34 +0.15 PIC12(aq) + 2e +0.52 S(s) + 2H(aq) + 2e PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq) Pt(s) + 4 Cl(aq) H₂S(g) -0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1) H₂SO3(aq) + H₂O(1) +2.87 HSO (aq) + 3 H*(aq) + 2e -0.44 Sn²(aq) + 2e-Sn(s) +0.77 Sn (aq) + 2e Sn²+ (aq) +0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1) 0.00 Zn²(aq) + 2e-Zn(s) E°(V) -0.83 +0.88 +1.78 +0.79 +0.92 +0.85 +0.54 +1.20 -2.92 -3.05 -2.37 -1.18 +1.23 +1.51 +0.59 +1.00 -1.16 -0.23 +0.96 -2.71 -0.28 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Fundamentals Of Analytical Chemistry
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:
9781285640686
Author:
Skoog
Publisher:
Cengage