1. The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k=0.029 W/m.K. The measured temperature difference across a 20 mm thick sheet of the material is T1- T2=10 °C. (a) What is the heat flux through a 2mx2m sheet of the insulation? (b) What is the rate of heat transfer through the sheet of insulation? 2. The heat flux that is applied to the left face of a plane wall is q"=20 W/m². The wall is of thickness L = 10 mm and of thermal conductivity k=12 W/m.K. If the surface temperatures of the wall are measured to be 50 °C on the left side and 30 °C on the right side, do steady-state conditions exist? 3. 3. A square isothermal chip is of width w = 5 mm on a side and is mounted in a substrate such that its side and back surfaces are well insulated; the front surface is exposed to the flow of a coolant at T∞ = 15 °C. From reliability considerations, the chip temperature must not exceed T=85 °C Coolant To, h 007 W Chip If the coolant is air and the corresponding convection coefficient is h=200W/m²-K, what is the maximum allowable chip power? If the coolant is a dielectric liquid for which h=3000 W/m2-K, what is the maximum allowable power?
1. The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k=0.029 W/m.K. The measured temperature difference across a 20 mm thick sheet of the material is T1- T2=10 °C. (a) What is the heat flux through a 2mx2m sheet of the insulation? (b) What is the rate of heat transfer through the sheet of insulation? 2. The heat flux that is applied to the left face of a plane wall is q"=20 W/m². The wall is of thickness L = 10 mm and of thermal conductivity k=12 W/m.K. If the surface temperatures of the wall are measured to be 50 °C on the left side and 30 °C on the right side, do steady-state conditions exist? 3. 3. A square isothermal chip is of width w = 5 mm on a side and is mounted in a substrate such that its side and back surfaces are well insulated; the front surface is exposed to the flow of a coolant at T∞ = 15 °C. From reliability considerations, the chip temperature must not exceed T=85 °C Coolant To, h 007 W Chip If the coolant is air and the corresponding convection coefficient is h=200W/m²-K, what is the maximum allowable chip power? If the coolant is a dielectric liquid for which h=3000 W/m2-K, what is the maximum allowable power?
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.20P: A high-speed computer is located in a temperature-controlled room at 26C. When the machine is...
Related questions
Question
Please answer question 1 please show me step by step.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning