1. Prove that Va ER, Vn Є N, [0 < a < 1] ⇒ an ≤1 using mathematical induction. Justify every step.) 2. Prove that Vn EN, [n>2n! a ≤1, which is true. n=k, the statement is true. HaER, NKEN, [oca<1] = a* ≤1. We prove a that it is true for n=k+1 also. k+ 1 K. a. = ≤ 1 a K+1 ≤ 1 к a We have, K and a≤1. product So, their is also ≤1 So, by principle of mathematical induction, HaER, In EN, [o ca<] a" ≤1. Step 2: Solving 2 2 For n = 3 n! = 3! = 6 nn = 3³ = 27. 6 < 27. it is true. Let the statement is true 1 Now, we will prove for nak+1. for nak ie, K k! 2 >n!
1. Prove that Va ER, Vn Є N, [0 < a < 1] ⇒ an ≤1 using mathematical induction. Justify every step.) 2. Prove that Vn EN, [n>2n! a ≤1, which is true. n=k, the statement is true. HaER, NKEN, [oca<1] = a* ≤1. We prove a that it is true for n=k+1 also. k+ 1 K. a. = ≤ 1 a K+1 ≤ 1 к a We have, K and a≤1. product So, their is also ≤1 So, by principle of mathematical induction, HaER, In EN, [o ca<] a" ≤1. Step 2: Solving 2 2 For n = 3 n! = 3! = 6 nn = 3³ = 27. 6 < 27. it is true. Let the statement is true 1 Now, we will prove for nak+1. for nak ie, K k! 2 >n!
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please help me with these question. I am having trouble understanding what to do. Please tell me if the following question below and there answers to them are correct.
Image 1: The 2 Questions 1 &2
Image 2: The Answers to the question (top part of the image is the answer to question #1, while the botton is answer to question #2)
Thank you
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,