MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 22 images
Knowledge Booster
Similar questions
- A property agent wants to study the relationship between the age of a house (X) and its selling price (Y). Listed below is a random sample of houses that the agent has sold recently. [House] [Age in Years (X)] [Selling Price in $'m (Y)] 1 9 2.2 2 7 1.9 3 11 1.7 4 12 0.8 5 8 2.5 a) Determine the linear regression equation. b) i. If the age of a house is 10 year-old, what is the selling price? ii. If the age of a house is 20 year-old, what is the selling price? c) i. Determine the correlation coefficient. ii. Interpret the result.arrow_forwardThe Simple Linear Regression model is Y = b0 + b1*X1 + u and the Multiple Linear Regression model with k variables is: Y = b0 + b1*X1 + b2*X2 + ... + bk*Xk + u Y is the dependent variable, the X1, X2, ..., Xk are the explanatory variables, b0 is the intercept, b1, b2, ..., bk are the slope coefficients, and u is the error term, Yhat represents the OLS fitted values, uhat represent the OLS residuals, b0_hat represents the OLS estimated intercept, and b1_hat, b2_hat,..., bk_hat, represent the OLS estimated slope coefficients. QUESTION 13 In the MLR model, what do we mean by Heteroskedasticity? That the error term depends on the values of the explanatory variables That all the explanatory variables have different variance That the variance of the error term is a function of the explanatory variables That the variance of the error term is constant QUESTION 14 Suppose that in the model Y=b0+b1*X1+u, we add a variable that is correlated with both Y and X1. What will happen…arrow_forwardAn owner of a home in the Midwest installed solar panels to reduce heating costs. After installing the solar panels, he measured the amount of natural gas used y (in cubic feet) to heat the home and outside temperature x (in degree-days, where a day's degree-days are the number of degrees its average temperature falls below 65° F) over a 23-month period. He then computed the least-squares regression line for predicting y from x and found it to be ŷ = 85 + 16x. The software used to compute the least-squares regression line for the equation above says that r2 = 0.98. This suggests which of the following? 1. Gas used increases by square root of 0.98 = 0.99 cubic feet for each additional degree-day? 2. Although degree-days and gas used are correlated, degree-days do not predict gas used very accurately. 3. Prediction of gas used from degree-days will be quite accurate.arrow_forward
- Find the equation y = Bo + B₁x of the least-squares line that best fits the given data points. (1,3), (2,3), (3,4), (4,4) The line is y = 2.49 + 0.44 x. (Type integers or decimals.)arrow_forwardAn engineer wants to determine how the weight of a gas-powered car, x, affects gas mileage, y. The accompanying data represent the weights of various domestic cars and their miles per gallon in the city for the most recent model year. Complete parts (a) through (d) below. (a) Find the least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable. y=nothingx+(nothing) (Round the x coefficient to five decimal places as needed. Round the constant to one decimal place as needed.) (b) Interpret the slope and y-intercept, if appropriate. Choose the correct answer below and fill in any answer boxes in your choice. (Use the answer from part a to find this answer.) A. A weightless car will get nothing miles per gallon, on average. It is not appropriate to interpret the slope. B. For every pound added to the weight of the car, gas mileage in the city will decrease by nothing mile(s) per gallon, on…arrow_forwardThe Simple Linear Regression model is Y = b0 + b1*X1 + u and the Multiple Linear Regression model with k variables is: Y = b0 + b1*X1 + b2*X2 + ... + bk*Xk + u Y is the dependent variable, the X1, X2, ..., Xk are the explanatory variables, b0 is the intercept, b1, b2, ..., bk are the slope coefficients, and u is the error term, Yhat represents the OLS fitted values, uhat represent the OLS residuals, b0_hat represents the OLS estimated intercept, and b1_hat, b2_hat,..., bk_hat, represent the OLS estimated slope coefficients. QUESTION 4 Suppose we have an SLR model, where the dependent variable (Y) represents ‘how satisfied someone is with his/her life, from 0 to 100’ (the higher the value, the higher the satisfaction with life), and the explanatory variable (X1) represents ‘personal annual income in £1,000’. The estimated OLS regression line is: Yhat = 33.2 + 0.74*X1. According to this model, what is the predicted life satisfaction, for someone with…arrow_forward
- q7-arrow_forwardSuppose you want to test whether X2 and X3 can jointly explain Y in the following regression model: Y = Bo + B1X1 + B,X2 + B3X3 + u You obtain data for 85 observations and conduct a joint test of significance at 1% level. Your restricted model is given by, OY = Bo + B3X3 +u OY = Bo + B1X1 + B3 X3 + u OY = Bo + B1X1 + u OY = Bo + uarrow_forwardThe Simple Linear Regression model is Y = b0 + b1*X1 + u and the Multiple Linear Regression model with k variables is: Y = b0 + b1*X1 + b2*X2 + ... + bk*Xk + u Y is the dependent variable, the X1, X2, ..., Xk are the explanatory variables, b0 is the intercept, b1, b2, ..., bk are the slope coefficients, and u is the error term, Yhat represents the OLS fitted values, uhat represent the OLS residuals, b0_hat represents the OLS estimated intercept, and b1_hat, b2_hat,..., bk_hat, represent the OLS estimated slope coefficients. QUESTION 28 Suppose your estimated MLR model is: Y_hat = -30 + 2*X1 + 10*X2 Suppose the standard error for the estimated coefficient associated with X2 is equal to 5. Now, suppose that for some reason we multiply X2 by 5 and we re-estimate the model using the rescaled explanatory variable. What will be the value of the estimated coefficient of X2 and its standard error? The estimated coefficient of X2 will be equal to 50 and its standard error will be…arrow_forward
- Consider the regression equation with quantitative predictor variable x1 and indicator variables x2 and x3, corresponding to one qualitative predictor variable. Interpret the hypothesis H0: β2 = 0 in terms of the regression lines associated with the three possible values of the qualitative predictor variable.arrow_forwardConsider the points in the plane: (1,2) (2,3) (3,5) (4,4) (5,7) (7,8) (i) Compute the correlation coefficient. (ii) Compute the equation for the regression line.arrow_forwardc) Give the expression of R˜^2 in terms of R^2 , and justify your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman