Show that the projection onto Col(A) is unnecessary by verifying that m 타 6 has a unique solution. (This means that 31 1 = 4 4 was already in Col(A).)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
If we have a set of points that actually lie on a line, the process we've learned for
linear regression will certainly find the equation of that line! Moreover the linear
model and the input data will match precisely (i.e. all of the residuals will be 0.)
Consider the set of points {(3,4), (4, 5), (6,7)}, and the linear regression proce-
dure.
We would first construct the matrix
31
4 1
6 1
We would normally be solving the system
A
3
4
A.: = V
where vis the projection of the vector made from the y coordinates of the points
onto the column space of A.
Show that the projection onto Col(A) is unnecessary by verifying that
=
1
1
m
b
]
has a unique solution. (This means that
=
4
|;;ª
5
was already in Col(A).)
Transcribed Image Text:If we have a set of points that actually lie on a line, the process we've learned for linear regression will certainly find the equation of that line! Moreover the linear model and the input data will match precisely (i.e. all of the residuals will be 0.) Consider the set of points {(3,4), (4, 5), (6,7)}, and the linear regression proce- dure. We would first construct the matrix 31 4 1 6 1 We would normally be solving the system A 3 4 A.: = V where vis the projection of the vector made from the y coordinates of the points onto the column space of A. Show that the projection onto Col(A) is unnecessary by verifying that = 1 1 m b ] has a unique solution. (This means that = 4 |;;ª 5 was already in Col(A).)
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,