
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
![1. A 12 kg box sits on top of a 38 kg box.
C
(a) Draw an FBD for each box.
(b) Calculate the normal force acting on the 12 kg box. [ans: 120 N [up]]
(c) Calculate the normal force acting on the 38 kg box due to the floor. [ans: 490 N [up]]](https://content.bartleby.com/qna-images/question/bb34cbd8-1292-461f-8596-c9cf9db3fcf9/f9798963-5e74-421e-b0c7-fa724cb12745/lvszjdp_thumbnail.png)
Transcribed Image Text:1. A 12 kg box sits on top of a 38 kg box.
C
(a) Draw an FBD for each box.
(b) Calculate the normal force acting on the 12 kg box. [ans: 120 N [up]]
(c) Calculate the normal force acting on the 38 kg box due to the floor. [ans: 490 N [up]]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object of mass m is dropped al t = 0 from the roof of a building of height h. While the object is falling, a wind blowing parallel to the face of the building exerts a constant horizontal force F on the object. (a) At what time t does the object strike the ground? Express t in terms of g and h. (b) Find an expression in terms of m and F for the acceleration ax of the object in the horizontal direction (taken as the positive x direction). (c) How far is the object displaced horizontally before hitting the ground? Answer in terms of m, g, F, and h. (d) Find the magnitude of the objects acceleration while it is falling, using the variables F, m, and g.arrow_forwardWhat can you say about the velocity of a moving body that in dynamic equilibrium? Draw a sketch of such a body using clearly labeled arrows to represent all external forces on the body.arrow_forwardJamal and Dayo are lifting a large chest, weighing 207 lb, by using the two rope handles attached to either side. As they lift and hold it up so that it is motionless, each handle makes a different angle with respect to the vertical side of the chest (Fig. P5.76). If the angle between Jamals handle and the vertical side is 25.0 and the angle between Dayos handle and the vertical side of the chest is 30.0, what are the tensions in each handle? FIGURE P5.76arrow_forward
- In Problem 10, the mass of the sign is 25.4 kg, and the mass of the potted plant is 66.7 kg. a. Assuming the objects are in equilibrium, determine the magnitude of the static friction force experienced by the potted plant. b. What is the maximum value of the static friction force if the coefficient of static friction between the pot and the roof is 0.572?arrow_forward(a) What is the maximum frictional force in the knee joint of a person who supports 66.0 kg of her mass on that knee? (b) During strenuous exercise, it is possible to exert forces to the joints that are easily 10 times greater than the weight being supported. What is the maximum force of friction under such conditions? The frictional forces in joints are relatively small in all circumstances except when the joints deteriorate, such as from injury or arthritis. Increased frictional forces can cause further damage and pam.arrow_forwardA brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800 N on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating at 1.20 m/s2 backward. (a) What is the force of friction between the losing player's feet and the grass? (b) What force does the winning player exert on the ground to move forward if his mass plus equipment is 110 kg? (c) Draw a sketch of the situation showing the system of interest used to solve each part. For this situation, draw a free-body diagram and write the net force equation.arrow_forward
- A 9.00-kg object starting from rest falls through a viscous medium and experiences a resistive force given by Equation 6.2. The object reaches one half its terminal speed in 5.54 s. (a) Determine the terminal speed. (b) At what time is the speed of the object three-fourths the terminal speed? (c) How far has the object traveled in the first 5.54 s of motion?arrow_forward(a) What is the maximum frictional force in the knee joint of a person who supports 66.0 kg of her mass on that knee? (b) During strenuous exercise it is possible to exert forces to the joints that are easily ten times greater than the weight being supported. What is the maximum force of friction under such conditions? The frictional forces in joints are relatively small in all circumstances except when the joints deteriorate, such as from injury or arthritis. Increased frictional forces can cause further damage and pain.arrow_forwardAn aluminum block of mass m1 = 2.00 kg and a copper block of mass m2 = 6.00 kg are connected by a light string over a frictionless pulley. They sit on a steel surface as shown in Figure P5.46, where = 30.0. (a) When they are released from rest, will they start to move? If they do, determine (b) their acceleration and (c) the tension in the string. If they do not move, determine (d) the sum of the magnitudes of the forces of friction acting on the blocks. Figure P5.46arrow_forward
- Consider the 52.0-kg mountain climber in Figure 5.22. (a) Find the tension in the rope and the force that the mountain climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her shoes and the cliff? Figure 5.22 Part of the climber's weight is supported by her rope and part by friction between her feet and the rock face.arrow_forwardSuppose your friend is sitting on a sled and asks you to move her across a flat, horizontal field. You have a choice of (a) pushing her from behind by applying a force downward on her shoulders at 30 below the horizontal (Fig. 4.22a) or (b) attaching a rope to the front of the sled and pulling with a force at 30 above the horizontal (Fig. 4.22b). Which option would be easier and why?arrow_forwardA 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning