Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
1. Fruit juice at 20 ° C containing 5% total solids concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and steam with a quality of 85% is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 1500 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count
a. The required steam rate is = Answer
kg / hour.
b. Steam economy when the condensate temperature is released at 90 ° C. = Answer
(kg of water evaporated / kg of steam)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A single effect evaporator was used to concentrate 8000 kg / hr of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15 ° Celsius. The evaporator was operated by steam (80% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 80 ° Celsius. the specific heat of the Ecer material is 4.1 KJ / (kg degrees Celsius) and the concentrate product is 3.1 KJ / (kg degrees Celsius). Count it a. Steam demand rate = b. Steam economy if Condensate temperature is released at 75 ° Celsius =arrow_forwardFruit juices at 30 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forwardFruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answer kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporated / kg of steam)arrow_forward
- Fruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forwardFruit juices at 20 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 3000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answerkg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporates / kg of steam)arrow_forward2. A piston-cylinder device initially contains 0.8 kg of nitrogen gas at 160 kPa and 240 °C. The nitrogen gas is now expanded to a pressure of 100 kPa isothermally. Determine the work boundary during this process. 3. A frictionless piston-cylinder device contains 6 kg vapor at 600 kPa and 400 °C. When heat is transferred to the system, the vapor temperature is increasing up to 500 °C. Calculate the work net during this heat transfer process.arrow_forward
- 1. Fruit juice at 20 ° C containing 5% total solids concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2500 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product 3.175 kJ / (kg ° C). CountA. The required steam rate is = Answererkg / hour.b. Steam economy if the condensate temperature cannot be released at 90 ° C. = Answer (kg evaporated air / kg steam)arrow_forward8.4-9. Throughput of a Single-Effect Evaporator. An evaporator is concentrating F kg/h at 311 K of a 20 wt % solution of NaOH to 50%. The saturated steam used for heating is at 399.3 K. The pressure in the vapor space of the evaporator is 13.3 kPa abs. The overall coefficient is 1420 W/m² K and the area is 86.4m?. Calculate the feed rate F of the evaporator. Ans. F = 9072 kg/harrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The