In the first part of the experiment trans-cinnamic acid began to melt rapidly at 133 °C and had completely liquefied at 135.9 °C. Urea began to melt rapidly at 133 °C, just as the trans-cinnamic acid, but had completely liquefied at 134.7 °C. Both urea and trans-cinnamic acid had true melting points of 132 °C generating a .75 percent error. The 50:50 mixture of urea and trans-cinnamic acid started to melt quickly at 98.5 °C, slowed down at 102 °C, at which point most of the compound had seemed to have melted with the exception of a few crystals, which did not melt completely until 125°C . In the second part of the experiment, the melting point of an unknown compound was measured at a fast rate, 10 °C/min, in order to obtain an estimate of the melting point of that compound, which was about 130 °C – 139 °C. At this point the suspected organic compound was benzoin, and the melting points of the two compounds, benzoin and the unknown, as well as the 50:50 mixture of each, were obtained. The unknown compound, along with the benzoin, had identical melting points of 133.7°C – 134.9°C, while the 50:50 mixture had a melting point of 133 °C – 134.3 °C. The true melting point for benzoin is 132°C, generating a .75 percent error.
pH was recorded every time 1.00 mL of NaOH was added to beaker. When the amount of NaOH added to the beaker was about 5.00 mL away from the expected end point, NaOH was added very slowly. Approximately 0.20 mL of NaOH was added until the pH made a jump. The pH was recorded until it reached ~12. This was repeated two more times. The pKa of each trial are determined using the graphs made on excel.
4- chlorobenzoic acid which was the aqueous layer has a theoretical melting point of 240-243°C, the organic layer, 4-chlorobenzyl alcohol has a theoretical melting point of 68-71°C. During our experiment we were unable to collect any data for the organic
After each of the solids were completely dry, each was placed into a MelTemp device. The temperature at which each solid began to melt and completed melting was recorded.
Pre-Lab: Analgesic drugs are known for reducing pain, while antiseptic drugs reduce symptoms such as fevers and swelling. However, some of these drugs can reduce both illnesses. To obtain a pure compound in these drugs, the scientist needs to separate the desired compound by taking advantage of the different physical and chemical properties. Such as; different boiling points, melting points and their solubility properties. To do this a chemist can also asses the differences between acidic and basic substances when they are added to water soluble mixtures. Within this current experiment I will asses the
In this experiment, an unknown Grignard reagent was prepared from an aryl halide. The unknown reagent was then reacted with carbon dioxide to form a carboxylic acid. The solid acid was then isolated and recrystallized before the melting point was taken. The precipitate was then dissolved in water and titrated to determine the molecular weight. The melting point and molecular weight were then used to determine the unknown acid obtained from the experiment.
The primary goal of this laboratory is to correctly identify an unknown substance. To achieve this task, one may use various tests that reveal both chemical and physical properties of a substance. By comparing the results of a known substance and the unknown substance, one may eliminate alternative possibilities and more accurately predict the undisclosed compound. Furthermore, by performing these tests, data can be collected and verified regarding chemical and physical properties of the unknown. Understanding the chemical properties of a known substance aids one’s understanding of the unknown based on comparative analysis of the results of the tests.
Discussion: As seen in the melting point determination, the average melting point range of the product was 172.2-185.3ºC. The melting points of the possible products are listed as 101ºC for o-methoxybenzoic acid, 110ºC for m- methoxybenzoic acid, and 185ºC for p- methoxybenzoic acid. As the melting point of the sample
Abstract: One mixture of two unknown liquid compounds and one mixture of two unknown solid compounds were separated, isolated, purified, and characterized by boiling point. Two liquid unknowns were separated, isolated, and purified via simple distillation. Then, the process of an acid-base extraction and washing were used to separate two unknown compounds into two crude compounds: an organic acid and a neutral organic compound. Each crude compound was purified by recrystallization, resulting in a carboxylic acid (RCO2H) and a pure organic compound (RZ). The resulting mass of the pure carboxylic acid was 1.688g with a percent recovery of 31.80%, the boiling range was 244-245 °C, and its density was 2.0879g/mL. The resulting mass of the pure organic solid was 2.4902g with a percent recovery of 46.91%, the boiling range was 52.0-53.4°C, and its density was 1.5956 g/mL.
Identifying this organic acid was an extensive task that involved several different experiments. Firstly, the melting point had to be determined. Since melting point can be determined to an almost exact degree, finding a close melting point of the specific unknown can accurately point to the identification of the acid. In this case the best melting point
What is the stereochemistry for the bromination of trans-cinnamic acid, and how is it formed?
Three grams of a mixture containing Benzoic Acid and Naphthalene was obtained and placed in 100 ml beaker and added 30 ml of ethyl acetate for dissolving the mixture. A small amount (1-2 drops) of this mixture was separated into a test tube. This test tube was covered and labelled as “M” (mixture). This was set to the side and used the following week for the second part of lab. The content in the beaker was then transferred into separatory funnel. 10 ml of 1 M NaOH added to the content and placed the stopper in the funnel. In the hood separatory funnel was gently shaken for approximately one minute and vent the air out for five seconds. We repeated the same process in the same manner one more time by adding 10ml of 1M NaOH.
In this lab, liquid-liquid extraction was performed to isolate a mixture of benzocaine and benzoic acid. 2.0107 grams of the mixture was first weighed out for the trials. When HCl was added to the mixture for the first acid extraction of benzocaine, an emulsion formed during inversion and venting that prevented a defined separation of the two layers. 8 mL of water was therefore added before continuing the extraction. The addition of NaOH then turned the top aqueous layer basic, indicated by the pH strips that turned blue when tested. A vacuum filtration isolated 0.29 grams of benzocaine and a MelTemp apparatus measured the crystal’s melting point ranges to be 85.1C-87.4C. For the base extraction of benzoic acid, the aqueous layers were retrieved
The beaker was slowly heated on a hot plate with low stirring until most of the stilbene was dissolved. 0.4 g of pyridinium tribromide was measured and added to the beaker after 5 minutes of heating. Small amounts of ethanol were used to clean the sides of the beaker. The beaker was heated for an additional 10 minutes on low temperature. An ice bath was prepared. The beaker was removed from the hot plate and left to cool to room temperature. Once at room temperature, the beaker was placed in the ice bath for 15 minutes. The solid product was collected through vacuum filtration and the product was weighed and a melting point was taken. Waste was disposed of in the correct waste bins and lab bench was cleaned
Objective: The objective of this experiment is to use acid-base extraction techniques to separate a mixture of organic compounds based on acidity and/or basicity. After the three compounds are separated we will recover them into their salt forms and then purify them by recrystallization and identify them by their melting points.
The objectives of this lab are, as follows; to understand what occurs at the molecular level when a substance melts; to understand the primary purpose of melting point data; to demonstrate the technique for obtaining the melting point of an organic substance; and to explain the effect of impurities on the melting point of a substance. Through the experimentation of three substances, tetracosane, 1-tetradecanol and a mixture of the two, observations can be made in reference to melting point concerning polarity, molecular weight and purity of the substance. When comparing the two substances, it is evident that heavy molecule weight of tetracosane allowed