Acid-Base Extraction Lab
Experimental:
Three grams of a mixture containing Benzoic Acid and Naphthalene was obtained and placed in 100 ml beaker and added 30 ml of ethyl acetate for dissolving the mixture. A small amount (1-2 drops) of this mixture was separated into a test tube. This test tube was covered and labelled as “M” (mixture). This was set to the side and used the following week for the second part of lab. The content in the beaker was then transferred into separatory funnel. 10 ml of 1 M NaOH added to the content and placed the stopper in the funnel. In the hood separatory funnel was gently shaken for approximately one minute and vent the air out for five seconds. We repeated the same process in the same manner one more time by adding 10ml of 1M NaOH.
After about 1 minute of shaking, the two layers separated. The organic layer on the top layer (consisted of ethyl acetate and naphthalene) collected for further experiment; by adding Sodium Sulfate into organic phase and filtering the Na2So4 from the solution using the wool. The dried organic layer was weighed to get its mass and the residue of Na2SO4 were rinsed with ethyl acetate under vacuum (rotary evaporator). The acid extract on the bottom layer which is a combination of benzoic acid and NaOH were collected in the 50 mL Erlenmeyer beaker for the recovery of acid.
We then created an ice bath using a 250mL Erlenmeyer beaker. The 50 mL Erlenmeyer beaker was then labeled as “Acid Extract”, and was placed in the
In order to isolate benzoic acid, benzocaine and 9-fluorenone, each component needed to be separated from one another. All three compounds began together in one culture tube, dissolved in methylene chloride and formed into a homogenous mixture. In this culture tube, two milliliters of aqueous three molar hydrochloric acid was added, which immediately formed two layers, the top acidic aqueous layer was clear in color and contained benzocaine, and the bottom organic formed was yellow and contained benzoic acid and 9-fluorenone. Benzocaine’s amino group is protonated by the aqueous layer hydronium. This protonation forms the conjugate acid of benzocaine, benzocaine hydrochloride. Thus, the conjugate acid, benzocaine hydrochloride is a salt in which is soluble in water and furthermore can be isolated from the organic mixture. When testing out the pH levels in benzocaine, the pH test strip was dark blue in color, indicating a pH level of around 5 to 7. When isolating benzoic acid, two milliliters of aqueous three molar sodium hydroxide was added, which deprotonates the carboxylic group in benzoic acid, forming its conjugate base, sodium benzoate. As with benzocaine hydrochloride, sodium benzoate is a water soluble ionic salt in the aqueous layer that can then be separated from the bottom organic layer containing the 9-fluorenone. The pH test strip was a vibrant red for benzoic acid, indicating a pH of 2. Now the 9-fluorenone is left, deionized water is added to remove any excess
The wet, crude product was placed into the 50 mL Erlenmeyer flask. Small amounts of CaCl2 were added to dry the solution. The flask was sealed and the mixture was swirled and left to settle. Once
The problem that was trying to be solved in this study deals with analyzing unknown solutions. In this particular case, a chemical company has several unknown solutions and to correctly dispose of them they need to know their properties. To figure out the properties several qualitative tests were performed throughout the study (Cooper 2012).
This experiment was started with a clear solution of sodium benzoate and HCl was added to it, ultimately producing benzoic acid. First, .3395 g of sodium benzoate was weighed, then it was dissolved in water, causing it to disassociate into ions. Next, 3M of HCl were added drop wise to the solution until it reached a pH of 2, thus introducing the hydronium ion. This addition caused a white, solid benzoic acid to precipitate out of the solution. A vacuum filtration system was used to separate the solid from the liquid. What was once
Experiment 4A: Determination of a Partition Coefficient for Benzoic Acid in Methylene Chloride and Water, and Experiment 4B: Solvent Extraction I: Acid-Base Extraction Using the System Benzoic Acid, Methylene Chloride, and Sodium Bicarbonate Solution
This experiment combined all the knowledge of the previous labs performed throughout the semester. An unknown mixture containing an organic acid or base and an organic neutral compound in nearly equal amounts needs to be separated to its separate components. An understanding of solubility, extraction, crystallization and vacuum filtration is necessary in order to
After the mixture finished refluxing, the flask was then cooled on ice. A sulfuric acid solution was then prepared by pouring 4.5 mL of concentrated H2SO4 over 50 grams of ice and then diluted to 75 mL by adding enough tap water to reach 75 mL. The sulfuric acid solution was then cooled on ice.
Me and my lab partner, obtained a mixture of a un known proportion from the instructor and then flow the guide line in our lab manual to separate the mixture by applying the separation method motioned in our lab manual pages 33-40 . In this experiment, the separation methods were decantation,
By using acid-base titration, we determined the suitability of phenolphthalein and methyl red as acid base indicators. We found that the equivalence point of the titration of hydrochloric acid with sodium hydroxide was not within the ph range of phenolphthalein's color range. The titration of acetic acid with sodium hydroxide resulted in an equivalence point out of the range of methyl red. And the titration of ammonia with hydrochloric acid had an equivalence point that was also out of the range of phenolphthalein.. The methyl red indicator and the phenolphthalein indicator were unsuitable because their pH ranges for their color changes did not cover the equivalence points of the trials in which they were used. However, the
In the first acid extraction of benzocaine, the compound was dissolved in the organic solvent of dichloromethane. When the mixture was shaken with HCl, benzocaine’s amine group gained a proton and became more soluble in water than dichloromethane. This allowed the newly formed hydrochloric salt to migrate to the aqueous layer. However, the addition of NaOH to the acidic aqueous layer regenerated benzocaine by deprotonation, making it insoluble in the aqueous layer. The precipitation of an ionic salt was therefore recovered by vacuum filtration and had a tested melting point range of 85.1C-87.4C compared to 88C-90C, the literature melting point of benzocaine. The similarity in melting point ranges, but low percent yield of 30.37% proves that the extract was somewhat successful. Lower yields may be the result of spillage performed in the lab. In the second basic extraction, the organic layer now included benzoic acid and benzamide. When treated with NaOH to deprotonate benzoic acid, the newly formed sodium benzoate transitioned to the aqueous layer as a sodium salt. Benzoic acid is regenerated once again after the addition of HCl and became insoluble in the aqueous layer after protonation. Its precipitation was then filtered out for a 65.87% recovery. Compared to its literature melting point of 122.41C, the resulting 120.9C-123.5C melting range of the sample also supports the accuracy of the separation due to its similarities and high percent yield. In conclusion, the usage of base and acid liquid extraction was mostly successful in this experiment because it was able to efficiently and properly isolate the impure mixture into two separate components of benzocaine and benzoic acid. By performing the techniques of extraction and vacuum filtration, the similarities between literature and tested
The retained solution from the NaHCO3 extraction was used to precipitate the P-toulic acid. Drop wise 3M HCl was added to the extracted solution carefully until no more precipitate was formed and the solution tested acidic, with a pH reading less than 3 as indicated by pH paper testing. A piece of clean filter paper was then weighed and the mass recorded in a lab notebook. A vacuum filtration system was constructed with a Buchner funnel
In this experiment, 0.31 g (2.87 mmol) of 2-methylphenol was suspended in a 10 mL Erlenmeyer flask along with 1 mL of water and a stir bar. The flask was clamped onto a hotplate/stirrer and turned on so that the stir bar would turn freely. Based on the amount of 2-methylphenol, 0.957 mL (0.00287 mmol) NaOH was calculated and collected in a syringe. The NaOH was then added to the 2-methylphenol solution and allowed to mix completely. In another 10 mL Erlenmeyer flask, 0.34 g (2.92 mmol) of sodium chloroacetate was calculated based on the amount of 2-methylphenol and placed into the flask along with 1 mL of water. The sodium chloroacetate solution was mixed until dissolved. The sodium chloroacetate solution was poured into the 2-methylphenol and NaOH solution after it was fully dissolved using a microscale funnel.
In this experiment were used three separation techniques: extraction, sublimation and recrystallization. During the first method, 0.70 g sample of salicylic acid-naphthalene mixture was dissolved in 10 ml of diethyl ether. The solution was placed in a separatory funnel and 10 ml of saturated aqueous sodium bicarbonate solution was added to it. After the initial gas was
Table 2: Consists of color extract taken from a red cabbage for a natural indicator. The pH reading that was measured by using the pH meter and the result of the pH reading to determine whether the solution was acidic or basic.
Unknown sample 207 was analyzed in this experiment. Using acid/base chemistry, certain components were moved to the aqueous layer at each step in order to separate the amine, carboxylic acid, and neutral parts from each other. First, the basic amine was protonated with 5% HCl, a strong acid. This protonation step led to the ionization of the amine component, causing it to migrate into the aqueous layer where it was more soluble.1 This left only the neutral and carboxylic acid components in the organic layer since both do not react with the acid, and thus remained uncharged. Then, the addition of 1M NaOH, a strong base, resulted in the carboxylic acid being deprotonated.1 This ionized form of the acid was then soluble in the aqueous layer.1 Since the NaOH does not react with the neutral component, this part remained in the organic