The practical was carried out to investigate the effect of pH on the reaction of the enzyme acid phosphatase. Of the many functions of proteins, catalysis is by far the most vital. When catalysis is not present, most reactions in the biological systems take place very slowly to produce at an adequate pace for metabolising organism. The catalysts that take this role are called enzymes. Enzymes are the most efficient catalysts; they can enhance rate of reaction by up to 1020 over uncatalysed reactions. (Campbell et al, 2012). Enzyme catalysis is dependant upon factors such as concentration of enzyme and substrate, temperature and pH. These factors determine the rate of reaction, and an increase in temperature or pH above the optimum will …show more content…
After 30 seconds the same enzyme volume was added to the second flask. This was continued to the third, fourth and fifth flasks with interval of 30 seconds until the final addition occurred at 2.5 minutes. 3ml of sample was taken first flask at 4 minutes and added to the appropriate tube of sodium hydroxide, from the second flask at 4.5 minute and so on, each flask was sampled at 30 second intervals. The sampling was then repeated starting at 8,12,16 minutes. The final sample from the last flask was taken at 18.5 minutes. Once the sampling was completed, measurements of absorbance were obtained for solution in each tube at 405 nm. Discussion Tables 2,3,4,5 and 6 show that as duration increased the absorbance also increased for each pH. The solution in the conical flask became darker (yellow) in time this is because the substrate, p-nitrophenyl phosphate was catalysed by acid phosphatase, releasing Nitrophenolate anion. It was the Nitrophenolate anion giving off the yellow colour; the presence of this feature increases the absorbance rate. The addition of sodium hydroxide distorted the shape of the enzyme making it no longer effective in its function. The addition of sodium hydroxide at different times means that the amount of Nitrophenolate anion released will be different, thus, will have different absorbance readings (generally lower). The more time the enzyme is exposed to the substrate without the addition of
However, the rate of reaction only increases for a certain period of time until there is lesser substrate molecules than the enzyme molecules. The increase of enzyme concentration does not have effect if there are lesser substrate molecules than enzyme molecules initially.
Living cells within our bodies perform an abundance of chemical reactions very speedily because of the participation of enzymes. Enzymes are biological catalysts that speed up a chemical reaction without being depleted or altered in the reaction (Garrette & Grisham, 1999). The
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is
The time in the water bath was also controlled to ensure that the enzymes were left to react for the same amount of time, making the experiment
After the substrate solution was added, five drops of the enzyme were quickly placed in tubes 3, 4 and 5. There were no drops of enzyme added in tubes 1 and 2 and in tube 6 ten drops were added. Once the enzyme solution has been added the tubes were then left to incubate for ten minutes and after five drops of DNSA solution were added to tubes 1 to 6. The tubes were then placed in a hot block at 80-90oC for five minutes. They were then taken out after the five minute period and using a 5 ml pipette, 5 ml of distilled water were added to the 6 tubes and mixed by inversion. Once everything was complete the 6 tubes were then taken to the Milton Roy Company Spectronic 21 and the absorbance of each tube was tested.
Enzymes are central to every biochemical process. Due to their high specificity they are capable of catalyzing hundreds of reactions that signifies their vast practical importance.
Within a cell, enzymes are used as a catalyst to increase the rate of chemical reaction. They do not consume themselves, rather they help in increasing the rate of reaction. Within the body, enzymes vary depending on their specific functions. For instance, hydrogen peroxide is a toxic chemical, but it breaks down into harmless oxygen and water. This reaction can be sped up using the enzyme catalyst produced by yeast. Hydrogen peroxide is produced as a byproduct in cellular reaction, because it is poisonous and must be broken down, therefore this reaction is important. The speeding up of the reaction is shown below:
The experiments involved PH buffers of different pH were added to potato juice, water, and the enzyme catecholase. The mixture was then subjected to spectrophotometer at a wavelength of 420nm taking the absorbance readings. In the second experiment, a phosphate buffer of PH 7.0 was used in different measures together with different measurement of potato juice and the enzyme catecholase then subjected to the spectrophotometer at a wavelength of 420nm. The data collected inform of table and analyzed using descriptive statistics such as line graph and later interpreted, showing that PH and enzyme concentration do affect the rate of enzyme reaction
Introduction:Enzymes are made up of proteins which are produced within living cells and act as catalysts which speed up chemical reactions. They are made up of long chains of amino acids containing carbon, hydrogen, oxygen and nitrogen. Enzymes are structured to be
Enzymes, proteins that act as catalysts, are the most important type of protein[1]. Catalysts speed up chemical reactions and can go without being used up or changed [3] Without enzymes, the biochemical reactions that take place will react too slowly to keep up with the metabolic needs and the life functions of organisms. Catecholase is a reaction between oxygen and catechol [2]. In the presence of oxygen, the removal of two hydrogen atoms oxidizes the compound catechol, as a result of the formation of water [2]. Oxygen is reduced by the addition of two hydrogen atoms, which also forms water, after catechol is
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or
Enzymes are an important part of all metabolic reactions in the body. They are catalytic proteins, able to increase the rate of a reaction, without being consumed in the process of doing so (Campbell 96). This allows the enzyme to be used again in another reaction. Enzymes speed up reactions by lowering the activation energy, the energy needed to break the chemical bonds between reactants allowing them to combine with other substances and form products (Campbell 100). In this experiment the enzyme used was acid phosphates (ACP), and the substrate was p-nitrophenyl phosphate.
To prevent fluctuation in the pH, a solution known as a “buffer solution” was used in the experiment. Buffer solutions are mixtures of at least two chemicals which counteract the effect of acids and alkalis. Therefore, when a small quantity of alkali or acid solution is added the pH of the enzyme doesn’t change.
An enzyme is a catalyst. Catalysts are known for speeding up the rate of reactions by lowering the activation energy of the biochemical reaction. (Reece et al., 2011)
In the experiment we used Turnip, Hydrogen Peroxide, Distilled Water, and Guaiacol as my substances. On the first activity, Effect of Enzyme concentration of Reaction Rate for low enzyme concentration, we tested three concentrations of the turnip extract, and hydrogen peroxide. For the Turnip Extract I used 0.5 ml, 1.0 ml, and 2.0 ml. For hydrogen peroxide we used 0.1 ml, 0.2 ml, and 0.4 ml. We used a control to see the standard, and used a control for each enzyme concentration used. The control contains turnip extract and the color reagent, Guaiacol. We prepared my substrate tubes separately from the enzyme tubes. My substrate tube