Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 52P

(a)

To determine

The unknown tension and masses.

(a)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 60N , T2 is 52N and the value of the mass is m is 5.3kg .

Explanation of Solution

Given:

The given diagram is shown in Figure 1

  Physics for Scientists and Engineers, Chapter 4, Problem 52P , additional homework tip  1

Figure 1

Formula used:

For the given diagram, the expression for the horizontal forces is given by,

  T1cos60°=T3T1=T3cos60°

The equation for the forces resolved in the vertical direction is given by,

  T2=T1sin60°

The expression for the mass of the block is given by,

  m=T2g

Calculation:

The tension T1 is calculated as,

  T1=T3cos60°=60Ncos60°=60N

The expression for the value of the tension T2 in the rope is calculated as,

  T2=T1sin60°=(60N)sin60°=52N

The mass of the block is calculated as,

  m=T2g=52N9.8m/ s 2=5.3kg

Conclusion:

Therefore, the value of the tension T1 is 60N , T2 is 52N and the value of the mass is m is 5.3kg .

(b)

To determine

The unknown tension and masses.

(b)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 42.6N , T2 is 46.2N and the value of the mass is m is 4.7kg .

Explanation of Solution

Formula used:

The free body diagram for the tension in the rope for figure (b) is shown in Figure 2

  Physics for Scientists and Engineers, Chapter 4, Problem 52P , additional homework tip  2

Figure 2

For the given diagram, the expression for the horizontal forces is given by,

  T1sin60°=T3sin60°T1=T3tan60°

The equation for the forces resolved in the vertical direction is given by,

  T2=T3sin60°T1cos60°

The expression for the mass of the block is given by,

  m=T2g

Calculation:

The tension T1 is calculated as,

  T1=T3tan60°=80Ntan60°=42.6N

The expression for the value of the tension T2 in the rope is calculated as,

  T2=T3sin60°T1cos60°=(80N)sin60°(42.6N)cos60°=46.2N

The mass of the block is calculated as,

  m=T2g=46.2N9.8m/ s 2=4.7kg

Conclusion:

Therefore, the value of the tension T1 is 42.6N , T2 is 46.2N and the value of the mass is m is 4.7kg .

(c)

To determine

The unknown tension and masses.

(c)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 34N , T2 is 58.8N and the value of the mass is m is 3.47kg .

Explanation of Solution

Formula used:

The free body diagram for the tension in the rope for figure (c) is shown in Figure 3

  Physics for Scientists and Engineers, Chapter 4, Problem 52P , additional homework tip  3

Figure 3

For the given diagram, the expression for the horizontal forces is given by,

  T2=m1g

The equation for the forces resolved in the vertical direction is given by,

  T2=T1sin60°+T3sin60°

The expression for the mass of the block is given by,

  m=T1g

The expression for the forces resolved in the horizontal direction is given by,

  T1cos60°=T3cos60°T1=T3

Calculation:

The tension T2 is calculated as,

  T2=m1g=(6kg)(9.8m/ s 2)=58.8N

The expression for the value of the tension T1 in the rope is calculated as,

  T2=T1sin60°+T3sin60°58.8N=T1sin60°+T1sinsin60°T1=58.8N2sin60°T1=34N

The mass of the block is calculated as,

  m=T1g=34N9.8m/ s 2=3.47kg

Conclusion:

Therefore, the value of the tension T1 is 34N , T2 is 58.8N and the value of the mass is m is 3.47kg .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The planet Mars has a radius of 3,390 km. The value of g (free fall acceleration) at the surface of Mars is 3.71 m/s2. (a) Estimate the mass of Mars, in kg. (b) Estimate the value of g at a height of 1,750 km above the surface of Mars.
Explain, in terms of the properties of the four basic forces, why people notice the gravitational force acting on their bodies if itis such a comparatively weak force
My Print Center The mass of a sun is 3.36 x 1030 kg. The radius of the circular orbit of a planet around this sun is 9.7 x 1011 m. Determine the length of one year on this planet. Express the result in earth days where 1 day = 24 x 3600 seconds. Recall: G = 6.67E-11 N m²/kg² In submitting this result, I attest that I have not given nor received any assistance in violation of the UTC Honor Code Pledge. Q Search No new data to save. Last checked at 9:32pm Submit Quiz

Chapter 4 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY