Essential Cosmic Perspective
Essential Cosmic Perspective
9th Edition
ISBN: 9780135795033
Author: Bennett
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 35EAP

Thinking About Scale. One key to success m science is finding a simple way to evaluate new ideas, and making a simple scale model is often helpful. Suppose someone tells you that the reason it is warmer during the day then at night is that the day side of Earth is closer to the Sun then the night side. Evaluate this idea by thinking about the size of Earth and Is distance from the Sun in a scale model of the solar system.

Blurred answer
Students have asked these similar questions
The mass of the Earth is about 6 x 1021 metric tons, and the mass of the Sun is about 2 x 1027 metric tons.  About how many times more is the mass of the sun compared to the mass of the Earth? Put the numbers into Scientific Notation.  Do your calculations using the product or quotient rule.  Then write your answer as a Standard Number.  What is the proper name of the answer?
We need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you. Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)? The actual diameter of Mercury is 4879 km The Sun's diameter is 1392000 km If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be: 30cm1392000km Here is how we run the conversion:      4879km×30cm1392000km=0.105cm    or    0.11cm if we were to round our answer. This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…
Solar scientists want to measure the temperature inside the sun by sending in probes. Imagine that temperature increases by 1 million◦C for every 10,000 km below the surface. A probe that can handle a temperature of x million degrees costs x³ million dollars. a. How much would it cost to measure the temperature 10,000 km down? b. How much would it cost to measure the temperature 100,000 km down? c. How much would it cost to measure the temperature 200,000 km down?

Chapter 1 Solutions

Essential Cosmic Perspective

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY