Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.3, Problem 3P
Two vehicles collide at a 90° intersection. If the momentum of vehicle A is 6.10 × 105 kg km/h south and the momentum of vehicle B is 7.20 × 105 kg km/h east, what is the magnitude of the resulting momentum of the final mass?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Applied Physics (11th Edition)
Ch. 6.1 - Find the momentum of each object. 1. m = 2.00 kg, ...Ch. 6.1 - Find the momentum of each object. 2. m = 5.00 kg, ...Ch. 6.1 - Find the momentum of each object. 3. m = 17.0...Ch. 6.1 - Find the momentum of each object. 4. m = 38.0 kg, ...Ch. 6.1 - Find the momentum of each object. 5. m = 38 105...Ch. 6.1 - Find the momentum of each object. 6. m = 3.84 kg, ...Ch. 6.1 - Find the momentum of each object. 7. Fw = 1.50 ...Ch. 6.1 - Find the momentum of each object. 8. Fw = 3200 lb,...Ch. 6.1 - a. Find the momentum of a heavy automobile...Ch. 6.1 - a. Find the momentum of a bullet of mass 1.00 103...
Ch. 6.1 - a. Find the momentum of an automobile of mass 2630...Ch. 6.1 - A ball of mass 0.50 kg is thrown straight up at...Ch. 6.1 - A bullet with mass 60.0 g is fired with an initial...Ch. 6.1 - A cannon is mounted on a railroad car. The cannon...Ch. 6.1 - A 125-kg pile driver falls from a height of 10.0 m...Ch. 6.1 - A person is traveling 75.0 km/h in an automobile...Ch. 6.1 - A 75.0-g bullet is fired with a muzzle velocity of...Ch. 6.1 - A 40.0-grain bullet is fired at a muzzle velocity...Ch. 6.1 - a. What force is required to stop a 1250-kg car...Ch. 6.1 - (a) What force is required to slow a 1350-kg car...Ch. 6.1 - What force is required to stop a 3000-kg truck...Ch. 6.1 - What force is needed to stop a piece of heavy...Ch. 6.1 - A standard 5.0-oz baseball is thrown and reaches a...Ch. 6.2 - One ball of mass 0.500 kg traveling 6.00 m/s to...Ch. 6.2 - A ball of mass 625 g traveling 4.00 m/s to the...Ch. 6.2 - A 0.600-kg ball traveling 4.00 m/s to the right...Ch. 6.2 - A 90.0-g disk traveling 3.00 m/s to the right...Ch. 6.2 - A 98.0-kg parts cart with rubber bumpers rolling...Ch. 6.2 - A 75.0-kg paint cart with rubber bumpers is...Ch. 6.2 - A railroad car of mass 2.00 104 kg is traveling...Ch. 6.2 - Find the velocity of the railroad cars in Problem...Ch. 6.2 - One cart of mass 12.0 kg is moving 6.00 m/s to the...Ch. 6.2 - One cart of mass 15.0 kg is moving 5.00 m/s to the...Ch. 6.2 - A 1650-kg automobile moving south 12.0 m/s...Ch. 6.2 - A 16.0-g bullet is shot into a wooden block at...Ch. 6.2 - A 2450-kg automobile moving north 12.0 m/s...Ch. 6.3 - Two motorcycles of equal mass collide at a 90...Ch. 6.3 - Two pickup trucks crash at a 90 intersection. If...Ch. 6.3 - Two vehicles collide at a 90 intersection. If the...Ch. 6.3 - Two vehicles of equal mass collide at a 90...Ch. 6.3 - A vehicle with a mass of 1000kg is going east at a...Ch. 6.3 - Ball A with a mass of 0.500 kg is moving east at a...Ch. 6.3 - A vehicle with mass of 950kg is driving east with...Ch. 6.3 - A vehicle with a mass of 800kg is traveling west...Ch. 6 - Momentum is a equal to speed times weight b equal...Ch. 6 - Impulse is a. a force applied to an object b. the...Ch. 6 - Why do a slow-moving loaded truck and a speeding...Ch. 6 - How are impulse and change in momentum related?Ch. 6 - Why is follow-through important in hitting a...Ch. 6 - Describe in your own words the law of conservation...Ch. 6 - Describe conservation of momentum in terms of a...Ch. 6 - One billiard ball striking another is an example...Ch. 6 - One moving loaded railroad car striking and...Ch. 6 - A father and 8-year-old son are standing on ice...Ch. 6 - A truck with mass 1475 slugs travels 57.0 mi/h....Ch. 6 - A projectile with mass 27.0 kg is fired with a...Ch. 6 - A box is pushed with a force of 125 N for 2.00...Ch. 6 - What is the momentum of a bullet of mass 0.034 kg...Ch. 6 - A 4.00-g bullet is fired from a 4.50-kg gun with a...Ch. 6 - A 150-kg pile driver falls from a height of 7.5 m...Ch. 6 - A 15.0-g bullet is fired at a muzzle velocity of...Ch. 6 - What force is required to slow a 1250-kg car...Ch. 6 - One ball of mass 575 g traveling 3.50 m/s to the...Ch. 6 - A railroad car of mass 2.25 104 kg is traveling...Ch. 6 - A 195-g ball traveling 4.50 m/s to the right...Ch. 6 - Two trucks of equal mass collide at a 90...Ch. 6 - Ball A, of mass 0.35 kg, has a velocity 0.75 m/s...Ch. 6 - A coach knows it is vital that the volleyballs be...Ch. 6 - An automobile accident causes both the driver and...Ch. 6 - Several African tribes engage in a ritual much...Ch. 6 - Sally, who weighs 125 lb, knows that getting out...Ch. 6 - An automobile accident investigator needs to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A glass coffee pot has a circular bottom with a 9.00-cm diameter in contact with a heating element that keeps t...
College Physics
A second experiment is performed in which glider D is fixed in place. Glider C is launched toward glider D with...
Tutorials in Introductory Physics
A mass m is dropped from height h above the top of a spring of constant k mounted vertically on the floor. Show...
Essential University Physics (3rd Edition)
Soccer fields vary in size. A large soccer field is 115 m long and 85.0 m wide. What is its area in square feet...
University Physics Volume 1
27. A pendulum has a period of 1.85 s on Earth. Whatis its period on Mars, where the acceleration of gravity is...
Physics: Principles with Applications
(II) Dimensional analysis. Waves on the surface of the ocean do not depend significantly on the properties of w...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass m moving along the x-axis with a velocity component +u collides head-on and sticks to a particle of mass m/3 moving along the x-axis with the velocity component −u. What is the mass M of the resulting particle?arrow_forwardA 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sarrow_forwardA 2.00-kg particle has a velocity (2.00i3.00j)m/s, and a 3.00-kg particle has a velocity (1.00i+6.00j)m/s. Find (a) the velocity of the center of mass and (b) the total momentum of the system.arrow_forward
- If a rainstorm drops 1 cm of rain over an area of 10km2 in the period of 1 hour, what is the momentum of the rain that falls in one second? Assume the terminal velocity of a raindrop is 10 m/s.arrow_forwardA soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. (a) What is the change in the magnitude of the balls momentum? (b) What magnitude impulse did the soccer player deliver to the ball? (c) What magnitude impulse would be required to kick the ball in the opposite direction at 12.8 m/s, instead? (See Section 6.1.)arrow_forwardSand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forward
- A model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a space-walk? Assume the fuel burns at a constant rate.arrow_forwardA car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forwardFrom what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forward
- Initially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?arrow_forwardA billiard player sends the cue ball toward a group of three balls that are initially at rest and in contact with one another. After the cue ball strikes the group, the four balls scatter, each traveling in a different direction with different speeds as shown in Figure P10.30. If each ball has the same mass, 0.16 kg, determine the total momentum of the system consisting of the four balls immediately after the collision. FIGURE P10.30arrow_forwardSven hits a baseball (m = 0.15 kg). He applies an average force of 50.0 N. The ball had an initial velocity of 35.0 m/s to the right and a final velocity of 40.0 m/s to the left as viewed by a fan in the stands. a. What is the impulse delivered by Svens bat to the baseball? b. How long is his bat in contact with the ball?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY