Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 47AP

A thin wire = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P30.47). The 30.0-cm wire is released at the instant t = 0 and falls, remaining parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s2. (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released?

Figure P30.47

Chapter 30, Problem 47AP, A thin wire  = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I =

(a)

Expert Solution
Check Mark
To determine

The equation for the emf induced in the wire as a function of time.

Answer to Problem 47AP

The equation for emf induced in the wire as function of time is (1.18×104)t0.8004.90t2

Explanation of Solution

Given info: Length of wire is 30.0cm , distance from parallel long wire is 80.0cm and current in the wire is 200A .

The speed of the wire according to Newton’s law of motion can be given as,

v=u+at

Here,

u is the initial speed of wire.

a is the acceleration of wire.

t is the time.

Substitute 0 for u and 9.80m/s2 for a in the above equation,

v=9.80t

The distance covered by the wire can be given as,

s=ut12gt2

Here,

s is the distance covered by the wire.

g is the acceleration due to gravity.

Substitute 0 for u and 9.80m/s2 for g in the above equation,

s=12(9.80m/s2)=4.90t2

The total distance covered by wire can be given as,

y=d+s

Here,

y is the total distance covered by the wire.

d is the distance between wires.

Substitute 80.0cm for d and 4.90t2 for s in the above equation,

y=(80.0cm)4.90t2=0.8004.90t2

The magnetic field at a distance y from the on a section of coil can be given as,

B=μ0I2πy

Here,

B is the magnetic field induced in the loop.

μ0 is the permeability constant.

I is the current induced in the loop.

y is any arbitrary distance from the wire.

The emf induced in the wire can be given as,

ε=Blv

Here,

ε is the emf induced in the wire.

l is the length of the wire.

v is the speed of the wire.

Substitute μ0I2πy for B in the above equation,

ε=(μ0I2πy)lv

Substitute 4π×107Tm/A for μ0 , 200A for I , 30.0cm for l , 9.80t for v and 0.8004.90t2 for y in the above equation,

ε=(4π×107Tm/A)(200A)(30.0cm)(1m100cm)(9.80t)2π(0.8004.90t2)=(1.18×104)t0.8004.90t2 (1)

Conclusion:

Therefore, the equation for emf induced in the wire as function of time is (1.18×104)t0.8004.90t2

(b)

Expert Solution
Check Mark
To determine

The minimum value of the emf.

Answer to Problem 47AP

The minimum value of emf is 0.

Explanation of Solution

Given info: Length of wire is 30.0cm , distance from parallel long wire is 80.0cm and current in the wire is 200A .

The expression for emf can be given as in equation (1),

ε=(1.18×104)t0.8004.90t2

At t=0 ,

ε=(1.18×104)×00.8004.90(02)=0

Conclusion:

Therefore, the minimum value of emf is 0.

(c)

Expert Solution
Check Mark
To determine

The maximum value of emf.

Answer to Problem 47AP

The maximum value of emf is infinity.

Explanation of Solution

Given info: Length of wire is 30.0cm , distance from parallel long wire is 80.0cm and current in the wire is 200A .

The expression for emf can be given as in equation (1),

ε=(1.18×104)t0.8004.90t2

From the above equation, at t= , ε= .

Conclusion:

Therefore, the minimum value of emf is

(d)

Expert Solution
Check Mark
To determine

The induced emf 0.300s after the wire is released.

Answer to Problem 47AP

The induced emf 0.300s after the wire is released is 98.3μV .

Explanation of Solution

Given info: Length of wire is 30.0cm , distance from parallel long wire is 80.0cm and current in the wire is 200A , instant of time is 0.300s .

The expression for emf can be given as in equation (1),

ε=(1.18×104)t0.8004.90t2

Substitute 0.300s for t in the above equation,

ε=(1.18×104)(0.300s)0.8004.90(0.300s)2=9.83×105V=98.3μV

Conclusion:

Therefore, the induced emf 0.300s after the wire is released is 98.3μV .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
6. Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Figure A2.4) consists of two long, parallel, horizontal rails, l= 3.50 cm apart, bridged by a bar of mass m= 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure A2.4 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the…
A portion of a long, cylindrical coaxial cable is shown in the figure below. An electrical current I = 3.0 amps flows down the center conductor, and this same current is returned in the outer conductor. Assume the current is distributed uniformly over the cross sections of the two parts of the cable. The values of the radii in the figure are r1 = 1.5 mm, r2 = 4.0 mm, and r3 = 7.0 mm. Using Ampere’s Law, find the magnitude of the magnetic field at the following distances from the center of the inner wire: a. 1.0 mm.  b. 3.0 mm.  c. 5.5 mm.  d. 9.0 mm.
A long straight wire in the z-axis carries a current of 6.0 A in the positive z direction, and a circular loop of 10 cm radius in the xy-plane also carries 1.0-A current as shown in the figure. Point P in the center of the ring is 25 cm from the z-axis. An electron is ejected from P at a velocity of 1.0 × 106 m / s in the negative x direction. What is the y component of the force acting on the electron? (e = 1.60 × 10-19 C, μ0 = 4π × 10-7 T m / A)

Chapter 30 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 30 - A coil formed by wrapping 50 turns of wire in the...Ch. 30 - Prob. 8PCh. 30 - A toroid having a rectangular cross section (a =...Ch. 30 - A small airplane with a wingspan of 14.0 m is...Ch. 30 - A helicopter (Fig. P30.11) has blades of length...Ch. 30 - A 2.00-m length of wire is held in an eastwest...Ch. 30 - A metal rod of mass m slides without friction...Ch. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - Prob. 16PCh. 30 - You are working for a company that manufactures...Ch. 30 - You are working in a laboratory that uses motional...Ch. 30 - You are working in a factory that produces long...Ch. 30 - Prob. 20PCh. 30 - Within the green dashed circle show in Figure...Ch. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Figure P30.24 (page 820) is a graph of the induced...Ch. 30 - The rotating loop in an AC generator is a square...Ch. 30 - In Figure P30.26, a semicircular conductor of...Ch. 30 - Prob. 27PCh. 30 - Prob. 28APCh. 30 - Prob. 29APCh. 30 - Prob. 30APCh. 30 - A circular coil enclosing an area of 100 cm2 is...Ch. 30 - Prob. 32APCh. 30 - A guitars steel string vibrates (see Fig. 30.5)....Ch. 30 - Prob. 34APCh. 30 - A conducting rod of length = 35.0 cm is free to...Ch. 30 - Prob. 36APCh. 30 - Prob. 37APCh. 30 - In Figure P30.38, the rolling axle, 1.50 m long,...Ch. 30 - Figure P30.39 shows a stationary conductor whose...Ch. 30 - Prob. 40APCh. 30 - Figure P30.41 shows a compact, circular coil with...Ch. 30 - Review. In Figure P30.42, a uniform magnetic field...Ch. 30 - An N-turn square coil with side and resistance R...Ch. 30 - A conducting rod of length moves with velocity v...Ch. 30 - A long, straight wire carries a current given by I...Ch. 30 - A rectangular loop of dimensions and w moves with...Ch. 30 - A thin wire = 30.0 cm long is held parallel to...Ch. 30 - Prob. 48CPCh. 30 - Prob. 49CPCh. 30 - Prob. 50CPCh. 30 - Review. The bar of mass m in Figure P30.51 is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY