Astronomy
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 30E

The light a planet receives from the Sun (per square meter of planet surface) decreases with the square of the distance from the Sun. So a planet that is twice as far from the Sun as Earth receives ( 1 / 2 ) 2 = 0.25 times (25%) as much light and a planet that is three times as far from the Sun receives ( 1 / 3 ) 2 = 0.11 times (11%) as much light. How much light is received by the moons of Jupiter and Saturn (compared to Earth), worlds which orbit 5.2 and 9.5 times farther from the Sun than Earth?

Blurred answer
Students have asked these similar questions
The planet Mercury is closer to the Sun than the Earth is, so it can sometimes come between Earth and Sun. That's called a transit. A transit is like a failed solar eclipse: In a solar eclipse, the Moon gets between Earth and Sun and blocks all sunlight. In a transit, Mercury blocks only a small fraction of the Sun's light because Mercury isn't close enough to us to completely block our view of the Sun.     We want to calculate by how much the Sun will be dimmed when such a transit occurs, because that's important to know for satellites which are powered by solar panels (shown hovering around the Earth in the image above). Without Mercury in the way, the radiation intensity that hits the top of the Earth's atmosphere from the Sun is 1,360.8 W/m2  (W stands for Watt, measuring energy transferred per second).  The fraction of this intensity that is blocked by Mercury during a transit is equal to the ratio between the cross-sectional area of Mercury (as seen from Earth) and the…
Raising a number in scientific notation to a power is easy: (5 x 105)² = (5)² x (105)² = 5 x 5 x 105 x 105 = 25 x 10(5 × 2) = 25 x 1010 = 2.5 x 101¹1 Keeping this in mind, what is the volume of the sun in km³? The radius of the sun is about 7 x 105 km, and the volume of a sphere is 4/3 x Pi x R³. (Use 3.14 for Pi, and enter your answer with two decimal places). km³ 3 What is the average density of the Sun? Density = mass / volume. The mass of the sun is 2.0x10³0 kg. kg/km³
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…

Chapter 30 Solutions

Astronomy

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
    Text book image
    The Solar System
    Physics
    ISBN:9781305804562
    Author:Seeds
    Publisher:Cengage
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY