Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 36P
Estimate the percent ionic character of the bond in each of the following species. All the species are unstable or reactive under ordinary laboratory conditions, but they can be observed in interstellar space.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
When cyanide ion, CN, reacts with hydrogen peroxide an oxygen atom is transferred to
the ion to form either cyanate lon (OCN) or fulminate ion (CNO"). Cyanate ion is indefinitely
stable at room temperature, while fulminate lon forms shock-sensitive (explosivell) lonic
compounds. Analyze the bonding in each ion (i.e. resonance structures) and utilize this to
explain the difference in stability.
3.
ELECTRONIC STRUCTURE AND CHEMICAL BONDING
Predicting the arrangement of electron groups around the centr...
Answer the questions in the table below about the shape of the hydrogen cyanide (HCN) molecule.
How many electron groups are around the central carbon atom?
Note: one "electron group" means one lone pair, one single bond,
one double bond, or one triple bond.
What phrase best describes the arrangement of these electron
groups around the central carbon atom?
(You may need to use the scrollbar to see all the choices.)
(choose one)
X
Ś
Give detailed Solution with explanation needed...give correct detailed Solution I will give you upvote
Chapter 3 Solutions
Principles of Modern Chemistry
Ch. 3 - Before the element scandium was discovered in...Ch. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - A gold nucleus is located at the origin of...Ch. 3 - Prob. 7PCh. 3 - A gold nucleus is located at the origin of...Ch. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Use the data in Table 3.1 to plot the logarithm of...Ch. 3 - Use the data in Table 3.1 to plot the logarithm of...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - HF has equilibrium bond length of 0.926 A and bond...Ch. 3 - Prob. 20PCh. 3 - For each of the following atoms or ions, state the...Ch. 3 - Prob. 22PCh. 3 - Use the data in Figure 3.11 and Table 3.2 to...Ch. 3 - Use the data in Figure 3.11 and Table 3.2 to...Ch. 3 - Prob. 25PCh. 3 - In a gaseous RbF molecule, the bond length is...Ch. 3 - The bond lengths of the XH bonds in NH3,PH3 , and...Ch. 3 - Arrange the following covalent diatomic molecules...Ch. 3 - The bond length in HI(1.62) is close to the sum of...Ch. 3 - Prob. 30PCh. 3 - Use electronegativity values to arrange the...Ch. 3 - Use electronegativity values to rank the bonds in...Ch. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Estimate the percent ionic character of the bond...Ch. 3 - The percent ionic character of a bond can be...Ch. 3 - The percent ionic character of the bonds in...Ch. 3 - Assign formal charges to all atoms in the...Ch. 3 - Assign formal charges to all atoms in the...Ch. 3 - Determine the formal charges on all the atoms in...Ch. 3 - the formal charges on all the atoms in the...Ch. 3 - Prob. 43PCh. 3 - In each of the following Lewis diagrams, Z...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Acetic acid is the active ingredient of vinegar....Ch. 3 - Under certain conditions, the stable form of...Ch. 3 - White phosphorus (P4) consists of four phosphorus...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Draw Lewis diagrams for the two resonance forms of...Ch. 3 - Draw Lewis diagrams for the three resonance forms...Ch. 3 - Methyl isocyanate, which was involved in the...Ch. 3 - Prob. 56PCh. 3 - Draw Lewis diagrams for the following compounds....Ch. 3 - Draw Lewis diagrams for the following ions. In the...Ch. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - For each of the following molecules or molecular...Ch. 3 - For each of the following molecules or molecular...Ch. 3 - Give an example of a molecule or ion having a...Ch. 3 - Give an example of a molecule or ion having a...Ch. 3 - For each of the answers in Problem 59, state...Ch. 3 - For each of the answers in Problem 60, state...Ch. 3 - Prob. 67PCh. 3 - Mixing SbCl3 and GaCl3 in a 1:1 molar ratio (using...Ch. 3 - (a) Use the VSEPR theory to predict the structure...Ch. 3 - Ozone (O3) has a nonzero dipole moment. In the...Ch. 3 - Assign oxidation numbers to the atoms in each of...Ch. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85APCh. 3 - Prob. 86APCh. 3 - At large interatomic separations, an alkali halide...Ch. 3 - Prob. 88APCh. 3 - Prob. 89APCh. 3 - Two possible Lewis diagrams for sulfine (H2CSO)...Ch. 3 - There is persuasive evidence for the brief...Ch. 3 - The compound SF3N has been synthesized. (a) Draw...Ch. 3 - Prob. 93APCh. 3 - The molecular ion S3N3 has the cyclic structure...Ch. 3 - Prob. 95APCh. 3 - Prob. 96APCh. 3 - Prob. 97APCh. 3 - Prob. 98APCh. 3 - A stable triatomic molecule can be formed that...Ch. 3 - The gaseous potassium chloride molecule has a...Ch. 3 - (a) Predict the geometry of the SbCl52 ion, using...Ch. 3 - Prob. 102APCh. 3 - Predict the arrangement of the atoms about the...Ch. 3 - Prob. 104APCh. 3 - Prob. 105APCh. 3 - Prob. 106APCh. 3 - Prob. 107APCh. 3 - Prob. 108APCh. 3 - (a) Determine the oxidation number of lead in each...Ch. 3 - Prob. 110APCh. 3 - Prob. 111CPCh. 3 - Prob. 112CPCh. 3 - A compound is being tested for use as a rocket...Ch. 3 - Prob. 114CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The molecular ion S3N3 has the cyclic structure All SN bonds are equivalent. (a) Give six equivalent resonance hybrid Lewis diagrams for this molecular ion. (b) Compute the formal charges on all atoms in the molecular ion in each of the six Lewis diagrams. (c) Determine the charge on each atom in the polyatomic ion, assuming that the true distribution of electrons is the average of the six Lewis diagrams arrived at in parts (a) and (b). (d) An advanced calculation suggests that the actual charge resident on each N atom is 0.375 and on each S atom is +0.041 . Show that this result is consistent with the overall +1 charge on the molecular ion.arrow_forwardWhat aspect of the following Lewis structure indicates that the concept of coordinate covalency is needed to explain the bonding in the molecule?arrow_forwardA stable triatomic molecule can be formed that contains one atom each of nitrogen, sulfur, and fluorine. Three bonding structures are possible, depending on which is the central atom: NSF, SNF, and SFN. (a) Write a Lewis diagram for each of these molecules, indicating the formal charge on each atom. (b) Often, the structure with the least separation of formal charge is the most stable. Is this statement consistent with the observed structure for this molecule—namely, NSF, which has a central sulfur atom? (c) Does consideration of the electronegativities of N, S, and F from Figure 3.18 help rationalize this observed structure? Explain.arrow_forward
- Derive Lewis structures for the compounds below. Furanarrow_forwardthe formal charges on all the atoms in the following Lewis diagrams. Which one would best represent bonding in the molecule Cl2O ?arrow_forwardIs there a good way to remember how to solve problems like this? I've tried thinking about this logically and it seems to be completely against whatever logic I'm using.arrow_forward
- Peter reads in a book on Organic Chemistry that “if a molecule has resonance, it will be more stable". Will any of the ions have resonant structures? Identify those who have resonance and draw all its resonant structures. Peter also reads that the more resonant structures have a molecule, the more stable it will be. According to your criterion, Which anion will be the most stable?arrow_forwardDescribe the location of electrons; describe how electron placement determines chemical bonding, stability, and becoming an ionarrow_forwardGive some examples of molecules where dative covalent bonding is seen.arrow_forward
- Please don't provide handwritten solution .....arrow_forwardWhich of these best descibe formal charge? Select all that apply. The difference between the number of electrons around an atom in the free state and the number of electrons assigned to the atom in the Lewis structure an atom in a chemical compound. O The formal charge of each atom is calculated by subtracting the number of valence electrons in the neutral atomfrom the number of electrons assigned to the atom. O Can be used to help determine the most reasonable distribution of electrons in a molecule or ion. O The charge that an atom in a molecule or ion would have if all atoms had the same electronegativity.arrow_forwardExplain the nature of chemical bonds and describe the different types of chemical bonds that exist, highlighting their key characteristics and significance.Chemical bonds are the attractive forces that hold atoms together in molecules and compounds, forming the basis of chemical structure and reactivity. Understanding the nature and types of chemical bonds is essential for explaining how substances interact and transform during chemical reactions. There are three primary types of chemical bonds: ionic, covalent, and metallic, each with distinct characteristics and significance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY