Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 3, Problem 3.41P
To determine

The maximum value of p and wavefunction.

Blurred answer
Students have asked these similar questions
Consider a 1-dimensional quantum system of one particle Question 01: in which the particle is under a potential V(x) = mw?a?, with m being the mass of the particle and w being a parameter (you may take it as angular fre- quency) with inverse dimension of time. The particle may be found in the region -0 < x < o. Varify that the lowest two states of the system are mutually orthonormal.
Determine the probability distribution function in the phase space for a relativistic particle in a volume V and with energy ε(p) = √√√/m²c²+p²c², where p is the ab- solute value of the momentum, m the mass, and c the speed of light. Give the final result in terms of the modified Bessel functions r+∞ Ky (z) = ™ (v-1)! 2 -zcosht e cosh (vt) dt Ky(z) ~ Check what happens in the limit ² →0. mc² kT z 0.
Problem 1: (a) A non-relativistic, free particle of mass m is bouncing back and forth between two perfectly reflecting walls separated by a distance L. Imagine that the two oppositely directed matter waves associated with this particle interfere to create a standing wave with a node at each of the walls. Find the kinetic energies of the ground state (first harmonic, n = 1) and first excited state (second harmonic, n = 2). Find the formula for the kinetic energy of the n-th harmonic. (b) If an electron and a proton have the same non-relativistic kinetic energy, which particle has the larger de Broglie wavelength? (c) Find the de Broglie wavelength of an electron that is accelerated from rest through a small potential difference V. (d) If a free electron has a de Broglie wavelength equal to the diameter of Bohr's model of the hydrogen atom (twice the Bohr radius), how does its kinetic energy compare to the ground-state energy of an electron bound to a Bohr model hydrogen atom?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON