Introductory Chemistry: An Active Learning Approach
Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN: 9781305079250
Author: Mark S. Cracolice, Ed Peters
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 98E

The following information is given for bismuth at 1 atm :

boiling point = 1627 ° C ΔH vap ( 1627 ° C ) = 822.9 J / g

melting point = 271.0 ° C ΔH fus ( 271.0 ° C ) = 52.60 J / g

specific heat gas = 0.1260 J / g ° C

specific heat liquid = 0.1510 J / g ° C

A 22.80 -g sample of liquid bismuth at 553.0 ° C is poured into a mold and allowed to cool to 28.0 ° C . What quantity of energy (in kilojoules) is transferred to the atmosphere in this process?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The amount of energy released by the temperature of liquid bismuth is changed from 553°C to 28.0°C is to be calculated.

Concept introduction:

The amount of energy required to change the state of a substance is known as enthalpy. It is the different in the energy of final and initial state of a substance. The negative and positive sign of enthalpy indicates the energy released and energy absorbed, respectively, during the phase change.

Answer to Problem 98E

The amount of energy released by the temperature of liquid bismuth is changed from 553°C to 28.0°C is 2.85kJ.

Explanation of Solution

Bismuth solidifies at 271.0°C. Hence, the temperature of bismuth is first changed from 553°C to 271.0°C.

The amount of energy released when temperature changes from 553°C to 271.0°C is calculated by the formula shown below.

q1=mc(T2T1)…(1)

Where,

m is the mass of the sample.

c is the specific heat of bismuth.

T2 is the final temperature (271.0°C).

T1 is the initial temperature (553°C).

The specific heat of bismuth is 0.1510J/g°C.

Substitute the mass, final, initial temperature and specific heat of zinc in equation (1).

q1=22.80g×0.1510J/g°C(271.0°C(553°C))=970.87J

The amount of energy required for phase transformation is calculated by the formula shown below.

q2=mΔHfus…(2)

Where,

ΔHfus is the heat of fusion.

The heat of fusion of bismuth is 52.60J/g.

Substitute the mass and heat of fusion in equation (2).

q2=22.80g×52.60J/g=1199.28J

The amount of energy required to change the temperature of bismuth from 271.0°C to 28.0°C is calculated by the formula shown below.

q3=mc(T2T1)…(3)

Where,

m is the mass of the sample.

c is the specific heat of bismuth.

T2 is the final temperature (28.0°C).

T1 is the initial temperature (271.0°C).

The specific heat of bismuth is 0.123J/g°C.

Substitute the mass, final, initial temperature and specific heat of bismuth in equation (3).

q3=22.80g×0.123J/g°C(28.0°C(271.0°C))=681.47J

The amount of energy released by the temperature of liquid bismuth is changed from 553°C to 28.0°C is calculated as shown below.

q=q1+q2+q3=970.87J+(1199.28J)+(681.47J)=2851.62J

Convert 2851.62J to kJ.

2851.62J=2851.621000kJ=2.85kJ

Conclusion

The amount of energy released by the temperature of liquid bismuth is changed from 553°C to 28.0°C is 2.85kJ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 15 Solutions

Introductory Chemistry: An Active Learning Approach

Ch. 15 - Prob. 11ECh. 15 - Prob. 12ECh. 15 - Prob. 13ECh. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - Prob. 16ECh. 15 - Prob. 17ECh. 15 - Prob. 18ECh. 15 - Prob. 19ECh. 15 - Prob. 20ECh. 15 - Prob. 21ECh. 15 - Prob. 22ECh. 15 - Prob. 23ECh. 15 - Prob. 24ECh. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Prob. 27ECh. 15 - Prob. 28ECh. 15 - Prob. 29ECh. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - Prob. 33ECh. 15 - Prob. 34ECh. 15 - Prob. 35ECh. 15 - Prob. 36ECh. 15 - Prob. 37ECh. 15 - Prob. 38ECh. 15 - Prob. 39ECh. 15 - Prob. 40ECh. 15 - Predict which compound, CO2 or CS2, has the higher...Ch. 15 - Prob. 42ECh. 15 - Predict which compound, CH4 or CH3F, has the...Ch. 15 - Prob. 44ECh. 15 - Prob. 45ECh. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - Use the following vapor pressure data to answer...Ch. 15 - Prob. 49ECh. 15 - Prob. 50ECh. 15 - Prob. 51ECh. 15 - Prob. 52ECh. 15 - Prob. 53ECh. 15 - Prob. 54ECh. 15 - Prob. 55ECh. 15 - The molar heat of vaporization of substance X is...Ch. 15 - Prob. 57ECh. 15 - Prob. 58ECh. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - Prob. 61ECh. 15 - Prob. 62ECh. 15 - Prob. 63ECh. 15 - Prob. 64ECh. 15 - Prob. 65ECh. 15 - Prob. 66ECh. 15 - Prob. 67ECh. 15 - Prob. 68ECh. 15 - Prob. 69ECh. 15 - Prob. 70ECh. 15 - Prob. 71ECh. 15 - Prob. 72ECh. 15 - Prob. 73ECh. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - Prob. 76ECh. 15 - Find the quantity of energy released in joules as...Ch. 15 - Prob. 78ECh. 15 - Prob. 79ECh. 15 - What is the energy change when the temperature of...Ch. 15 - Prob. 81ECh. 15 - Prob. 82ECh. 15 - Prob. 83ECh. 15 - Prob. 84ECh. 15 - Prob. 85ECh. 15 - Prob. 86ECh. 15 - Prob. 87ECh. 15 - Prob. 88ECh. 15 - Prob. 89ECh. 15 - Prob. 90ECh. 15 - Prob. 91ECh. 15 - Prob. 92ECh. 15 - Prob. 93ECh. 15 - The following information is given for n-pentane...Ch. 15 - Prob. 95ECh. 15 - Prob. 96ECh. 15 - Prob. 97ECh. 15 - The following information is given for bismuth at...Ch. 15 - Prob. 99ECh. 15 - Classify each of the following statements as true...Ch. 15 - Prob. 101ECh. 15 - Prob. 102ECh. 15 - Prob. 103ECh. 15 - Prob. 104ECh. 15 - Prob. 105ECh. 15 - Prob. 106ECh. 15 - Prob. 107ECh. 15 - Prob. 108ECh. 15 - A calorimeter contains 72.0g of water at 19.2C. A...Ch. 15 - Prob. 110ECh. 15 - Prob. 111ECh. 15 - Prob. 112ECh. 15 - Prob. 113ECh. 15 - It is a hot summer day, and Chris wants a glass of...Ch. 15 - Prob. 15.1TCCh. 15 - Prob. 15.2TCCh. 15 - Prob. 15.3TCCh. 15 - Prob. 15.4TCCh. 15 - Prob. 15.5TCCh. 15 - Prob. 15.6TCCh. 15 - Prob. 15.7TCCh. 15 - Prob. 15.8TCCh. 15 - Prob. 1CLECh. 15 - Prob. 2CLECh. 15 - Prob. 3CLECh. 15 - Prob. 4CLECh. 15 - Prob. 5CLECh. 15 - Prob. 6CLECh. 15 - Prob. 7CLECh. 15 - Prob. 1PECh. 15 - Prob. 2PECh. 15 - Prob. 3PECh. 15 - Prob. 4PECh. 15 - Prob. 5PECh. 15 - Prob. 6PECh. 15 - Prob. 7PECh. 15 - Prob. 8PE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY