University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.4CYU
Check Your Understanding An engineer builds two simple pendulums. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the double pendulum shown on figure below. A double
pendulum is formed by attaching a pendulum directly to another
one. Each pendulum consists of a bob connected to a massless
rigid rod which is only allowed to move along a vertical plane.
The pivot of the first pendulum is fixed to a point OO. All motion
is frictionless.
x2
m
The figure blow shows the kinetic energy of a simple pendulum versus its angle θ from the vertical. Note the energy units are in milli-joules. The vertical axis is set by Ks=4mJ and the mass of the pendulum bob is 0.200 kg. Determine the length of the pendulum in meters. Use g = 9.8 N/kg.
A spring with spring constant 150 N/m and rest length 13.6 cm is used to
pull a wooden block of weight 326 N horizontally across a tabletop at
constant velocity. The coefficient of kinetic friction between the block and
the table is 0.08, while the coefficient of static friction is 0.7. What is the
length of the spring while it is pulling the block (in meters)?
Chapter 15 Solutions
University Physics Volume 1
Ch. 15 - Check Your Understanding Why would it hurt more if...Ch. 15 - Check Your Understanding Identify one way you...Ch. 15 - Check Your Understanding Identify an object that...Ch. 15 - Check Your Understanding An engineer builds two...Ch. 15 - Check Your Understanding Why are completely...Ch. 15 - Check Your Understanding A famous magic trick...Ch. 15 - What conditions must be met to produce SHM?Ch. 15 - (a) If frequency is not constant for some...Ch. 15 - Give an example of a simple harmonic oscillator,...Ch. 15 - Explain why you expect an object made of a stiff...
Ch. 15 - As you pass a freight truck with a trailer on a...Ch. 15 - Some people modify cars to be much closer to the...Ch. 15 - Describe a system in which elastic potential...Ch. 15 - Explain in terms of energy how dissipative forces...Ch. 15 - The temperature of the atmosphere oscillates from...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - A pendulum clock works by measuring the period of...Ch. 15 - With the use of a phase shift, the position of an...Ch. 15 - Give an example of a damped harmonic oscillator....Ch. 15 - How would a car bounce after a bump under each of...Ch. 15 - Most harmonic oscillators are damped and, if...Ch. 15 - Why are soldiers in general ordered to “route...Ch. 15 - Do you think there is any harmonic motion in the...Ch. 15 - Some engineers use sound to diagnose performance...Ch. 15 - Prove that using x(t)=Asin(t+) will produce the...Ch. 15 - What is the period of 60.0 Hz of electrical power?Ch. 15 - If your heart rate is 150 beats per minute during...Ch. 15 - Find the frequency of a tuning fork that takes...Ch. 15 - A stroboscope is set to flash every 8.00105 s....Ch. 15 - A tire has a tread pattern with a crevice every...Ch. 15 - Each piston of an engine makes a sharp sound every...Ch. 15 - A type of cuckoo clock keeps time by having a mass...Ch. 15 - A mass m0is attached to a spring and hung...Ch. 15 - A 0.500-kg mass suspended from a spring oscillates...Ch. 15 - By how much leeway (both percentage and mass)...Ch. 15 - Fish are hung on a spring scale to determine their...Ch. 15 - It is weigh-in time for the local under-85-kg...Ch. 15 - One type of BB gun uses a spring-driven plunger to...Ch. 15 - When an 80.0-kg man stands on a pogo stick, the...Ch. 15 - A spring has a length of 0.200 m when a 0.300-kg...Ch. 15 - The length of nylon rope from which a mountain...Ch. 15 - The motion of a mass on a spring hung vertically,...Ch. 15 - (a) A novelty clock has a 0.0100-kg-mass object...Ch. 15 - Reciprocating motion uses the rotation of a motor...Ch. 15 - A student stands on the edge of a merry-go-round...Ch. 15 - What is the length of a pendulum that has a period...Ch. 15 - Some people think a pendulum with a period of 1.00...Ch. 15 - What is the period of a 1.00-m-long pendulum?Ch. 15 - How long does it take a child on a swing to...Ch. 15 - The pendulum on a cuckoo clock is 5.00-cm long....Ch. 15 - Two parakeets sit on a swing with their combined...Ch. 15 - (a) A pendulum that has a period of 3.00000 s and...Ch. 15 - A pendulum with a period of 2.00000 s in one...Ch. 15 - (a) What is the effect on the period of a pendulum...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - How much energy must the shock absorbers of a...Ch. 15 - If a car has a suspension system with a force...Ch. 15 - (a) How much will a spring that has a force...Ch. 15 - Suppose you have a 0.750-kg object on a horizontal...Ch. 15 - Suppose you attach an object with mass m to a...Ch. 15 - A diver on a diving board is undergoing SHM. Her...Ch. 15 - Suppose a diving board with no one on it bounces...Ch. 15 - The device pictured in the following figure...Ch. 15 - A mass is placed on a frictionless, horizontal...Ch. 15 - Find the ratio of the new/old periods of a...Ch. 15 - At what rate will a pendulum clock run on the...Ch. 15 - If a pendulum-driven clock gains 5.00 s/day, what...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - Assume that a pendulum used to drive a grandfather...Ch. 15 - A 2.00-kg block lies at rest on a frictionless...Ch. 15 - A suspension bridge oscillates with an effective...Ch. 15 - Near the top of the Citigroup Center building in...Ch. 15 - Parcels of air (small volumes of air) in a stable...Ch. 15 - Consider the van der Waals potential U(r)=U0[( R 0...Ch. 15 - Suppose the length of a clock’s pendulum is...Ch. 15 - (a) The springs of a pickup truck act like a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Q9.12 A cylindrical body has mass M and radius R. Can the mass be distributed within the body in such a way tha...
University Physics with Modern Physics (14th Edition)
(II) Take into account the Earth’s rotational speed (1 rev/day) and determine the necessary speed, with respect...
Physics for Scientists and Engineers with Modern Physics
The forces exerted on the ladder when the person is halfway up the ladder.
Physics (5th Edition)
Construct Your Own Problem Consider people pushing a toboggan with four children on it up a snow-covered slope....
College Physics
40. A 5.0-rn-diameter merry-go-round is initially turning with a
4.0 s period. It slows down and stops in 20 s...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardA vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardConsider an undamped linear oscillator with a natural frequency ω0 = 0.5 rad/s and the step function a = 1 m/s2. Calculate and sketch the response function for an impulse forcing function acting for a time τ = 2π/ω0. Give a physical interpretation of the results.arrow_forwardReview. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.arrow_forward
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA simple pendulum consists of a weight with mass 5.5 kg suspended from a 0.4 m long wire. The weight is pulled so that the wire makes an angle of 5° with the vertical, and then the weight is released. How long will it take the weight to reach its maximum height again? HV ΑΣφ ?arrow_forwardA spring 0.2 m long extends 0.001 m when a mass of 6 kg is hung from it. How far will a similar spring extend if it is twice as long, when a mass of 8 kg is hung from it instead? Give your answers in meters.arrow_forward
- You pull a simple pendulum 1.40 m long to the side through a small angle of 3.50º. What is the speed of the pendulum as it passes through equilibrium? Give your answer in m/s.arrow_forwardAnswer either this question or the next. L M Ax 3. A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg is released from rest at an angle 30° from the vertical. When the pendulum reaches the vertical position, the bob strikes a mass M = 3.0 kg that is resting on a frictionless table of height h = 0.85 m. You may assume the string is massless, and drag is negligible. a. Calculate the speed of the bob just before it strikes the box (i.e., when the pendulum string hangs straight down). b. Calculate the speeds of the bob and the box just after they collide elastically. c. Determine the impulse that acts on the box during the collision. d. Determine how far from the bottom edge of the table, Ax, the box lands.arrow_forwardHanging Mass: A block of mass 14.3 kg is connected to a light cord of length 444.3 cm and a spring with an equilibrium length of 36.8 cm. The block hangs motionless as shown in the figure. The spring has a sprìng constant of 2937 N/m. As the block hangs in equilibrium, the spring is horizontal and the cord makes an angle of 55 ° with respect to vertical. k M (a) What is the tension in the cord? (b) How far is the spring stretched from its equilibrium length?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY