Concept explainers
The value of
Answer to Problem 10.60P
Explanation of Solution
Given:
Calculation:
The given circuit is,
Current through transistors
Consider equation (2)
Now on considering equation (3),
From the circuit,
On substituting the given value,
Substitute
Substitute
Now calculate
Hence
Now calculate
Conclusion:
Want to see more full solutions like this?
Chapter 10 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
- Please choose the correct answer. About feedback.arrow_forwardDesign a common-emitter amplifier to provide a small-signal voltage gain of approximately -10. 1. Consider the circuit shown in Figure 1. Show the following calculations in your notebook: Calculate a value for Rc so that A, z –10 Calculate values for R1 and R2 so that the circuit is bias stable and near the center of the load line. (Note: Use the datasheet for the 2N5209 transistor to make your calculations more accurate). Vcc = 10 V R1 Rc Cc2 Cci RL Vs R, REj = 499 Q Figure 1: Common-emitter amplifier for part #1arrow_forwardConsider the emitter follower in Figure 1 with VCC = 10V, I = 100 mA, and RL = 100Ω. (a) Find the power dissipated in Q1 and Q2 under quiescent conditions. (vO = 0V) (b) For a sinusoidal output voltage of maximum possible amplitude (neglecting VCEsat), find the average power dissipation in Q1 and Q2. Also find the load power.arrow_forward
- A Bipolar junction Transistor with curreat amplification factor being 100, Input Base current is 50μA. Collector voltage is 10 V and biasing voltage being +20 V. Find followings a. Collector current b. Resistance (R1) c. Collector voltage , Emitter voltage , Base Voltage & Collector-Emitter Voltage.arrow_forwardConsider the emitter follower in Figure 1 with VCC = 10V, I = 100 mA, and RL = 100Ω. (a) Find the power dissipated in Q1 and Q2 under quiescent conditions. (vO = 0V) (b) For a sinusoidal output voltage of maximum possible amplitude (neglecting VCEsat ), find the average power dissipation in Q1 and Q2. Also find the load power.arrow_forwardQ1. The output characteristic of a typical transistor is shown below, where the quiescent point is selected on it. This transistor is used in the bias circuit presented below. Find the suitable values of Rg and Rc to fix the Q-point of the circuit properly. +Vcc = 12 V 12- Is = 70 uA 10- Ig = 60 uA 8- Rc Is = 50 uA Rs 6- Ig= 40 uA 4. Is = 30 uĄ Is = 20 uA B = 100 2- VBE = 0.7 V 0- -2- 2 4 6 8 10 12 14 16 VCE (V) Ic (mA)arrow_forward
- Using the small signal equivalent model, find the input and output impedance of such E-MOSFET circuit.arrow_forwardIn the figure, A characteristics curve is shown for the MOSFET. Determine the following outcome and parameters using the values given in the characteristics: i) Find the Ip for the VGs = 4V, where IGs(ON) = 4.5mA ii) Find the transconductence of MOSFET; where, MOSFET having the bias voltage VGs = 4V, and 6V. %3D A (mA) A5 (mA) 10 10 VGs=+8 V 9. 7 .7 VGs =+7 V 6 5 Vas=+6 V 4 VGs =+5 V 2 VGs =+4 V Vas =+3 V 1 3 4. 5 8 Vas 10 15 20 25 Vos Vas = VT=2 V a coarrow_forward31 The circuit shown in Figure P10.31 is a common-emitter amplifier stage. Determine the Thévenin equivalent of the part of the circuit containing R1, R2, and Væ with respect to the terminals of R2. Redraw the schematic, using the Thévenin equivalent. Vcc = 20 V B = 130 R = 1.8 M2 R2 = 300 k2 %3D Rc = 3 k2 Rg = 1 k2 %3D %3D R = 1 k2 Rs = 0.6 k2 vs = 1 cos(6.28 x 103t) mV Rc R1 Vcc R1EV. RS R2 V's Vị REarrow_forward
- 5V B OV OV For all the MOSFETS assume Vth=1V and k =50 mA/V² R₁ = 4700 Ao M₁ M₂ B Indicate and verify the state of each MOSFET and Vo for the following input combinations. Fill out the table for each assumed state of the MOSFET for every input combination. Use Rds(on) approximation for linear operation and three significant figures for the voltages. M1 is assumed to be in saturation. If Vgs = 2 V, Vds = 4V, Vds > Vgs - Vth 4>2-1 4> 1 (ok) Vgs > Vth (2>1) A M2 state M3 state V. 0 OV 5 V R₂ = 560Ω 5V M1 state M3arrow_forwardUsing LTSpice, simulate the circuit below, use 2N3904 for the transistor. Part ! DC simulation: Measure VCE and Ic. Use .op for the simulation cmd. Remove all capacitors and input signals first. Part 2 AC simulation: Connect all capacitors now and apply an AC signal at the input with an amplitufe of 1mV and a frequency of 1kHz. Determine the Voltage gain of the circuit by dividing Vo with Vin. Show the output for both the DC and AC analysis. Take a screenshot of the circuit and the output voltages and waveforms. Paste in a word file, write your answers, then save as pdf. 50 kΩ Σ 20 0,5 ΚΩ wwwh 9 Vcc=20 V Ca=1 µF = Cc₂ Cg=50 μF 5.6 kn B=100 Ca IST • 3.3 ΚΩ 5 ΚΩΣ CEarrow_forwardReferring to Figure 2 and the following BJT parameters: ß = 100, thermal voltage = 25 mV and VBE = 0.7 V. a. Calculate the DC operating point of the BJT which are the collector current, Ic and base-emitter voltage, VCE. b. Draw the low-frequency small-signal equivalent circuit for Figure 2. c. If v = (Mx10-8)sin(wt) V where M is your matric number, calculate the instantaneous positive peak collector voltage, Ve(peak). d. Explain the effect of CE on the BJT DC operating point and the small- signal voltage gain. Vc 10V Rc $4.7 ka R1 47 ko3 B=100 Vthermai=25mv R2 10 kn3 CE |10uf RE $1ko GND Figure 2arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,