A cylindrical bar of metal having a diameter of 18.3 mm and a length of 209 mm is deformed elastically in tension with a force of 52500 N. Given that the elastic modulus and Poisson's ratio of the metal are 68.2 GPa and 0.33, respectively, determine the following: (a) The amount by which this specimen will elongate in the direction of the applied stress. (in mm) (b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number. (in mm)
A cylindrical bar of metal having a diameter of 18.3 mm and a length of 209 mm is deformed elastically in tension with a force of 52500 N. Given that the elastic modulus and Poisson's ratio of the metal are 68.2 GPa and 0.33, respectively, determine the following: (a) The amount by which this specimen will elongate in the direction of the applied stress. (in mm) (b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number. (in mm)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A cylindrical bar of metal having a diameter of 18.3 mm and a length of 209 mm is deformed elastically in tension with a force of 52500 N. Given that the elastic modulus and Poisson's ratio of the metal are 68.2 GPa and 0.33, respectively, determine the following:
(a) The amount by which this specimen will elongate in the direction of the applied stress. (in mm)
(b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number. (in mm)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY