4. A copper spherical ball (15 cm in diameter) with a density of 8933 kg/m³, specific heat capacity of 385 J/kg-K and thermal conductivity of 401 W/m-K is removed from an oven at a uniform temperature of 140 °C. The ball is then left to cool down in steady air at 20 °C. Calculate the heat transfer coefficient for this process and the time for the surface of the ball to drop to 40 °C. Use the following equation to solve this problem (characteristic dimension of the sphere is the diameter). 0.589 · Ra Nu = 2+ 0.469 T6 Pr Note: you should check for the Lumped system analysis criteria for the final solution!

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.30P
icon
Related questions
Question
4. A copper spherical ball (15 cm in diameter) with a density of 8933 kg/m³,
specific heat capacity of 385 J/kg-K and thermal conductivity of 401 W/m-K is
removed from an oven at a uniform temperature of 140 °C. The ball is then left
to cool down in steady air at 20 °C. Calculate the heat transfer coefficient for this
process and the time for the surface of the ball to drop to 40 °C. Use the following
equation to solve this problem (characteristic dimension of the sphere is the
diameter).
0.589 · Ra*
Nu = 2+-
0.469 16
1+
Pr
Note: you should check for the Lumped system analysis criteria for the final
solution!
Transcribed Image Text:4. A copper spherical ball (15 cm in diameter) with a density of 8933 kg/m³, specific heat capacity of 385 J/kg-K and thermal conductivity of 401 W/m-K is removed from an oven at a uniform temperature of 140 °C. The ball is then left to cool down in steady air at 20 °C. Calculate the heat transfer coefficient for this process and the time for the surface of the ball to drop to 40 °C. Use the following equation to solve this problem (characteristic dimension of the sphere is the diameter). 0.589 · Ra* Nu = 2+- 0.469 16 1+ Pr Note: you should check for the Lumped system analysis criteria for the final solution!
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning