ELE639_Activity_Model1
.pdf
keyboard_arrow_up
School
Toronto Metropolitan University *
*We aren’t endorsed by this school
Course
639
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
Pages
1
Uploaded by ProfDiscoveryOpossum26
ELE639: Control Activity # 7 (Homework # 1) February 25, 2024 1 ELE639 Course Activity Homework # 1 Second Order Model for the Closed Loop - 10 points DUE DATE
: Upload to D2L (use “Assignment”)
, by February 25, 2024, 11:59 p.m. Please note that you are encouraged to complete this activity in PAIRS, to give you the benefit of working, and learning, with a study partner. Also, submissions with more than two names will NOT be marked! Name 1: Student Number: YOUR TOTAL IS: /10
Name 2: Student Number Consider the following closed loop system under Proportional Control: NOTE: You are encouraged to use Matlab whenever it helps, but do not submit Matlab code, or a Matlab printout of results –
these have to be handwritten, together with any conclusions. 1.
Find the critical gain value 𝐾
𝑐𝑟𝑖𝑡
(for marginal stability), then find an operational gain 𝐾
??
such that the Gain Margin is equal to 2. NOTE: Since the emphasis of the homework is on models, you can skip doing the full Routh Array by hand if you know how to find the Critical Gain by using the Root Locus (“rlocus” and “rlocfind” –
see lecture slides on Stability) or by using the symbolic Matlab script for the Routh Array.
2.
Find the open loop transfer function of the system at that value of the Operational Gain 𝐾
??
and perform the steady state error analysis of the system performance, i.e. find position, velocity & acceleration constants and the corresponding errors. 3.
Find the closed loop transfer function of the system at that value of the Operational Gain 𝐾
??
and decide if a reduced order model can be used. If yes, find the model parameters using TWO approaches you were introduced to:
Using the pole-zero map of the closed loop transfer function, determine the second order model based on the dominant closed loop poles.
Using the step response of the original system –
get the transient response specs (PO, Settling Time (2%), Rise Time (0-100%), etc.) and estimate the parameters of the second order model. 4.
Include a Matlab plot of the system response vs. BOTH model responses –
your plot should have three traces in it, all properly labeled.
5.
Tabulate and compare the specs for both models and the original system: PO, Settling Time (2%), Rise Time (0-100%), Steady State Error for Step. 6.
Provide a brief discussion of how the actual system response differs from the models, and which model, in your opinion, is better, and why.
Discover more documents: Sign up today!
Unlock a world of knowledge! Explore tailored content for a richer learning experience. Here's what you'll get:
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Help!!! Please solve the value
arrow_forward
Statics Problem !!!
Help me Part A , Part B , Part C!!!! Answer it this Problem Correctly!! Please give correct Solution
arrow_forward
Identify the lines
arrow_forward
Learning Goal:
To use equilibrium to calculate the plane state of stress in a rotated coordinate system.
In general, the three-dimensional state of stress at a point requires six stress components to be fully described: three normal stresses and three shear stresses (Figure 1). When the external loadings are coplanar, however, the resulting internal stresses can be treated as plane stress and described using a simpler, two-dimensional analysis with just two normal stresses and one shear stress (Figure 2). The third normal stress and two other shear stresses are assumed to be zero.
The normal and shear stresses for a state of stress depend on the orientation of the axes. If the stresses are given in one coordinate system (Figure 3), the equivalent stresses in a rotated coordinate system (Figure 4) can be calculated using the equations of static equilibrium. Both sets of stresses describe the same state of stress.
The stresses σx′and τx′y′ can be found by considering the free-body…
arrow_forward
System Specification
Task 1 is to complete the development of a simple simulated 2-wheel drive mobile robot platform.
You will need to research suitable actuators and platform designs. From review of your research then produce
a specification and model of the platform to hold the proposed processor unit (myRIO), and actuators together
(your chosen motors from selection available) with a battery (Hardware datasheets on BB).
arrow_forward
Learning Goal:
To use transformation equations to calculate the plane state of stress in a rotated coordinate system.
The normal and shear stresses for a state of stress depend on the orientation of the axes. If the stresses are
given in one coordinate system (Figure 1), the equivalent stresses in a rotated coordinate system (Figure 2) can
be calculated using a set of transformation equations. Both sets of stresses describe the same state of stress.
In order to use the transformation equations, a sign convention must be chosen for the normal stresses, shear
stresses, and the rotation angle. For the equations below, a positive normal stress acts outward on a face. A
positive Try acts in the positive y-direction on the face whose outward normal is in the positive x-direction. The
positive direction for the rotation is also shown in the second figure.
The stresses in the rotated coordinate system are given by the following equations:
στ
σy
+
cos 20+Try sin 20
2
2
σετ συ
=
σy'
cos 20-Try…
arrow_forward
I want to answer all the questions by handwriting.
arrow_forward
Help!!! Please answer part b correctly like part A. Please!!!!
arrow_forward
Help!!! Answer all parts correctly!! Please
arrow_forward
Develop the activity sequence model and determine the normal time for the following work activity:
arrow_forward
+ → CO
A student.masteryconnect.com/?iv%3D_n5SY3Pv5S17e01Piby
Gr 8 Sci Bench 1 GradeCam Rutherford TN 2021
AHMAD, ASHNA
D0
3 of 35
A student develops a model of an electric motor using two pins, a wire coil,
coil continues to spin with a certain speed.
wire coil
pins
magnet
tape
battery
How can the student increase the speed of the electric motor?
O by using wider pins
O by using thinner pins
O by using less wire in the clil
O by using more wire in the coil
e Type here to search
近
arrow_forward
You are spending the summer as an assistant learning how to navigate on a large ship carrying freight across Lake Erie. One day, you and your ship are to travel across the lake a distance of 200 km traveling due north from yourorigin port to your destination port. Just as you leave your origin port, the navigation electronics go down. The captain continues sailing, claiming he can depend on his years of experience on the water as a guide. The engineers work on the navigation system while the ship continues to sail,and winds and waves push it off course. Eventually, enough of the navigation system comes back up to tell you your location. The system tells you that your current position is 50.0 km north of the origin port and 25.0 km east of the port. The captain is a little embarrassed that his ship is sofar off course and barks an order to you to tell him immediately what heading he should set from your current position to the destination port. Give him an appropriate heading angle.
arrow_forward
Learning Goal:
To understand the concept of moment of a force and how to calculate it using a scalar
formulation.
The magnitude of the moment of a force with a magnitude F around a point O is defined
as follows:Mo = Fdwhere d is the force's moment arm. The moment arm is the
perpendicular distance from the axis at point O to the force's line of action.
Figure
F₁
1 of 2
Part A
A stool at a restaurant is anchored to the floor. When a customer is in the process of sitting down, a horizontal force with magnitude F₁ is exerted at the top of the stool support as shown in the figure. (Figure 1)
When the customer is seated, a vertical force with magnitude F2 is exerted on the stool support. If the maximum moment magnitude that the stool support can sustain about point A is M₁ = 140 lb-ft, what is the
maximum height do that the stool can have if the magnitudes of the two forces are F₁ = 65.0 lb and F₂ = 140 lb ? Assume that moments acting counterclockwise about point A are positive whereas…
arrow_forward
You are assigned as the head of the engineering team to work on selecting the right-sized blower that will go on your new line of hybrid vehicles.The fan circulates the warm air on the inside of the windshield to stop condensation of water vapor and allow for maximum visibility during wintertime (see images). You have been provided with some info. and are asked to pick from the bottom table, the right model number(s) that will satisfy the requirement. Your car is equipped with a fan blower setting that allow you to choose between speeds 0, 1,2 and 3. Variation of the convection heat transfer coefficient is dependent upon multiple factors, including the size and the blower configuration.You can only use the following parameters:
arrow_forward
Learning Goal:
To develop the ability to break a frame or machine down
into subsystems and to determine the forces developed
at internal pin connections.
Frames and machines are systems of pin-connected,
multiforce members. Frames are designed to support
loads, whereas machines are designed to transmit or
alter the effects of loads. For a frame or machine to be in
equilibrium, each member of the frame or machine
system must be in equilibrium. Free-body diagrams of the
overall system, as well as individual members, groups of
members, and subsystems, must be drawn.
Figure
B
b
30°
2b
Н.
4 of 4
Submit Previous Answers
✓ Correct
Note that the internal reactions at B are not included in the free-body diagram of the subsystem ABC.
Part D-A tractor shovel
The tractor shovel shown (Figure 4) carries a 500 kg load that has its center of mass at H. The shovel's dimensions are:
a = 52.0 mm, b = 208 mm, c = 312 mm, d = 104 mm, and e = 364 mm. Find the reaction force at E. Assume that the
positive…
arrow_forward
Help can only be sought via private Ed Discussion posts or instructor office hours.
- In all coding, use only functions covered in class. It will be considered a violation of the Academic Integrity Policy if you use
any build-in functions or operators of Matlab that calculate the inverse of a matrix, interpolations, spline, diff, integration, ode,
fft, pdes, etc.;
- You may reuse functions you yourself developed throughout this semester in this class or from solutions posted on Canvas for
this class.
Problem Description (CCOs #1, 2, 3, 4, 5, 6, 7, 8, 11, 12)
A water tank of radius R = 1.8m with two outlet pipes of radius r₁ = 0.05m and r2 installed at heights h₁ = 0.13m
and h₂ = 1m, is mounted in an elevator moving up and down causing a time dependent acceleration g(t) that must be
modeled as
g(t) = go+a1 cos(2π f₁t) + b₁ sin(2π f₁t) + a2 cos(2π f₂t) + b₂ sin(2π f₂t),
(1)
Figure 1: Water tank inside an elevator
The height of water h(t) in the tank can be modeled by the following ODE,…
arrow_forward
Learning Goal:
To describe the shape and behavior of cables that are subjected to concentrated and
distributed loads.
Part A
Structures often use flexible cables to support members and to transmit loads between
structural members. Because a cable's weight is often significantly smaller than the
load it supports, a cable's weight is considered negligible and, therefore, not used in
the analysis.
In this tutorial, cables are assumed to be perfectly flexible and inextensible. Thus, once
the load is applied the geometry of the cable remains fixed and the cable segment can
be treated as a rigid body.
Cables of negligible weight support the loading shown. (Figure 1) If W, = 85.0 N , W, = 510 N, YB = 1.40 m, yc = 2.80 m, yp = 0.700 m, and zc = 0.850 m, find zg.
Express your answer numerically in meters to three significant figures.
> View Available Hint(s)
VO AEoI vec
IB = 2.048
m
Submit
Previous Answers
X Incorrect; Try Again; 4 attempts remaining
Part B Complete previous part(s)
W2
O…
arrow_forward
Parts a and b were answered in a previous question, part c was unanswered this is the entire question :)
arrow_forward
-The exam is open adopted textbook, open class notes (posted notes and solutions on the class' Canvas site only) and you may use
Matlab's build-in help system, but only to look up Matlab syntax questions;
- no collaboration is allowed; no help, including the tutoring center, may be sought to solve the problems;
- exam questions may only be asked to the instructor via private Ed Discussion posts or during the instructor's office hours;
- for non Matlab Grader problems, document all steps you took to solve the problem. This can be handwritten, but must be legible
for credit. If the problem states 'By hand', do not use any script/function to actually solve the problem, however, you may use a
non-programmable calculator or script/functions coded in this class to help in verifying the numerical results of individual steps;
- on Gradescope associate/select your answer pages with the corresponding problem numbers. Failure to do so may result in
no points given initially and will require a…
arrow_forward
Follow the instructions carefully.
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Learning Goal: To use equilibrium to calculate the plane state of stress in a rotated coordinate system. In general, the three-dimensional state of stress at a point requires six stress components to be fully described: three normal stresses and three shear stresses (Figure 1). When the external loadings are coplanar, however, the resulting internal stresses can be treated as plane stress and described using a simpler, two-dimensional analysis with just two normal stresses and one shear stress (Figure 2). The third normal stress and two other shear stresses are assumed to be zero. The normal and shear stresses for a state of stress depend on the orientation of the axes. If the stresses are given in one coordinate system (Figure 3), the equivalent stresses in a rotated coordinate system (Figure 4) can be calculated using the equations of static equilibrium. Both sets of stresses describe the same state of stress. The stresses σx′and τx′y′ can be found by considering the free-body…arrow_forwardSystem Specification Task 1 is to complete the development of a simple simulated 2-wheel drive mobile robot platform. You will need to research suitable actuators and platform designs. From review of your research then produce a specification and model of the platform to hold the proposed processor unit (myRIO), and actuators together (your chosen motors from selection available) with a battery (Hardware datasheets on BB).arrow_forwardLearning Goal: To use transformation equations to calculate the plane state of stress in a rotated coordinate system. The normal and shear stresses for a state of stress depend on the orientation of the axes. If the stresses are given in one coordinate system (Figure 1), the equivalent stresses in a rotated coordinate system (Figure 2) can be calculated using a set of transformation equations. Both sets of stresses describe the same state of stress. In order to use the transformation equations, a sign convention must be chosen for the normal stresses, shear stresses, and the rotation angle. For the equations below, a positive normal stress acts outward on a face. A positive Try acts in the positive y-direction on the face whose outward normal is in the positive x-direction. The positive direction for the rotation is also shown in the second figure. The stresses in the rotated coordinate system are given by the following equations: στ σy + cos 20+Try sin 20 2 2 σετ συ = σy' cos 20-Try…arrow_forward
- Develop the activity sequence model and determine the normal time for the following work activity:arrow_forward+ → CO A student.masteryconnect.com/?iv%3D_n5SY3Pv5S17e01Piby Gr 8 Sci Bench 1 GradeCam Rutherford TN 2021 AHMAD, ASHNA D0 3 of 35 A student develops a model of an electric motor using two pins, a wire coil, coil continues to spin with a certain speed. wire coil pins magnet tape battery How can the student increase the speed of the electric motor? O by using wider pins O by using thinner pins O by using less wire in the clil O by using more wire in the coil e Type here to search 近arrow_forwardYou are spending the summer as an assistant learning how to navigate on a large ship carrying freight across Lake Erie. One day, you and your ship are to travel across the lake a distance of 200 km traveling due north from yourorigin port to your destination port. Just as you leave your origin port, the navigation electronics go down. The captain continues sailing, claiming he can depend on his years of experience on the water as a guide. The engineers work on the navigation system while the ship continues to sail,and winds and waves push it off course. Eventually, enough of the navigation system comes back up to tell you your location. The system tells you that your current position is 50.0 km north of the origin port and 25.0 km east of the port. The captain is a little embarrassed that his ship is sofar off course and barks an order to you to tell him immediately what heading he should set from your current position to the destination port. Give him an appropriate heading angle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY