A horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal sur- face as in Figure P8.35. (a) The block is pulled to a posi- tion x = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position x,/2 isn't the answer to part (c) half the answer to part (b)? = 3.00 cm? (d) Why

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question
35. A horizontal spring attached to a wall has a force constant
QC of k = 850 N/m. A block of mass m = 1.00 kg is attached
to the spring and rests on a frictionless, horizontal sur-
face as in Figure P8.35. (a) The block is pulled to a posi-
tion x, = 6.00 cm from equilibrium and released. Find the
elastic potential energy stored in the spring when the block
is 6.00 cm from equilibrium and when the block passes
through equilibrium. (b) Find the speed of the block as it
passes through the equilibrium point. (c) What is the speed
of the block when it is at a position x/2 = 3.00 cm? (d) Why
isn't the answer to part (c) half the answer to part (b)?
%3D
miwwwwwww
k
x= 0
x = x;/2
x= x;
Figure P8.35
Transcribed Image Text:35. A horizontal spring attached to a wall has a force constant QC of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal sur- face as in Figure P8.35. (a) The block is pulled to a posi- tion x, = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position x/2 = 3.00 cm? (d) Why isn't the answer to part (c) half the answer to part (b)? %3D miwwwwwww k x= 0 x = x;/2 x= x; Figure P8.35
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON