Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
There are three possible structures for PCl2F3 with phosphorus as the central atom. Draw them and discuss how measurements of dipole moments could help distinguish among them.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The hydrocarbon cyclobutane, C4H8, is represented above. At high temperatures, cyclobutane quickly decomposes into ethene, C2H4. (see attached image) (a) Draw a Lewis electron-dot diagram of the ethene molecule in the following box, and estimate the value of the H−C−H bond angle in ethene.arrow_forwardWhat is the bond energy calculation for C6H6 and 3h2 gives C6H12 in chemistry?arrow_forwardAlthough carbon has four bonds in stable molecules, sometimes reactive carbon intermediates that contain carbon atoms without four bonds are formed for very short time periods. Examples of these unstable intermediates include the methyl carbocation (CH 3) + and the methyl carbanion (CH 3) −. Draw Lewis structures for both unstable ions and predict the shape around carbon.arrow_forward
- Write a Lewis structure for the amide ion, NH2─, and assign formal charges to each atom.arrow_forwardMethanethiol, CH3SH, has a substantial dipole moment (μ = 1.52) even thoughcarbon and sulfur have identical electronegativities. Explain.arrow_forwardChloral, Cl3C—CH=O, reacts with water to form the sedative and hypnotic agent chloral hydrate, Cl3C—CH(OH)2. Draw Lewis structures for these substances, and describe the change in molecular shape, if any, that occurs around each of the carbon atoms during the reaction.arrow_forward
- Carbon, nitrogen, and oxygen form two different polyatomic ions: cyanate ion (NCO) and fulminate ion (CNO). Write Lewis structures for each anion, including near-equivalent resonance structures (do not add any arrows between structures) and indicating formal charges. The isocyanate ion also has two near-equivalent structures, but the formal charge on the nitrogen attom cannot be reduced to zero: Cyanate ion (NCO)arrow_forwardDoes your molecular exhibit resonance? If so, show all possible forms. Does your molecule have any isomers? If so, show Lewis structures of them as well. for CH3CH2OHarrow_forwardDraw the Lewis structure of HClO₃ (with minimized formal charges) and then choose the appropriate pair of molecular geometries of the two central atoms. Your answer choice is independent of the orientation of your drawn structure.arrow_forward
- Hydrogen cyanide can be catalytically reduced with hydrogen to form methylamine. Use Lewis structures and bond energies to determine ΔH°rxn for HCN(g) + 2 H2(g) ⟶ CH3NH2(g)arrow_forwardFormamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forwardIt is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning