University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.39P
A block with mass 0.50 kg is forced against a horizontal spring of negligible mass, compressing the spring a distance of 0.20 m (Fig. P7.39). When released, the block moves on a horizontal tabletop for 1.00 m before coming to rest. The force constant k is 100 N/m. What is the coefficient of kinetic friction μk between the block and the tabletop?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 3.39kg block is pulled across a floor by a
16.25 N force. The coefficients of static and
kinetic friction are 0.4 and 0.2. What is the
speed of the block after 2.33 m?
Physics students do an expriment to determine the coefficient of kinetic friction between a wooden object and the horizontal table it is on. This object has a mass of 1.6 kg. The students push it against a spring, which compresses the spring by 18cm. When released, the spring sends the object moving across the table and it stops 82 cm from where it was released. The spring constant is 200 N/m. Find the obeject-table coefficient of kinetic friction.
A 2.0 kg block is pushed against a horizontal spring compressing the spring by 15 cm. When the block is released it slides 75 cm along a horizontal surface and comes to a rest. If the spring constant is 200 N/m, what is the coefficient of friction between the block and the table. Use g = 9.8 N/kg.
Chapter 7 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 7.1 - The figure shows two friction-less ramps. The...Ch. 7.2 - Consider the situation in Example 7.9 at the...Ch. 7.3 - In a hydroelectric generating station, falling...Ch. 7.4 - A particle moving along the x-axis is acted on by...Ch. 7.5 - The curve in Fig. 7.24b has a maximum at a point...Ch. 7 - A baseball is thrown straight up with initial...Ch. 7 - A projectile has the same initial kinetic energy...Ch. 7 - An object is released from rest at the top of a...Ch. 7 - An egg is released from rest from the roof of a...Ch. 7 - A physics teacher had a howling hall suspended...
Ch. 7 - Is it possible for a friction force to increase...Ch. 7 - A woman bounces on a trampoline, going a little...Ch. 7 - Fractured Physics. People often call their...Ch. 7 - (a) A book is lifted upward a vertical distance of...Ch. 7 - (a) A block of wood is pushed against a spring,...Ch. 7 - A 1.0-kg stone and a 10.0-kg stone are released...Ch. 7 - Two objects with different masses are launched...Ch. 7 - When people are cold, they often rub their hands...Ch. 7 - A box slides down a ramp and work is done on the...Ch. 7 - In physical terms, explain why friction is a...Ch. 7 - Since only changes in potential energy are...Ch. 7 - Figure 7.22a shows the potential-energy function...Ch. 7 - Figure 7.22b shows the potential-energy function...Ch. 7 - For a system of two particles we often let the...Ch. 7 - Explain why the points x = A and x = A in Fig....Ch. 7 - A particle is in neutral equilibrium if the net...Ch. 7 - The net force on a particle of mass m has the...Ch. 7 - The potential-energy function for a force F is...Ch. 7 - In one day, a 75-kg mountain climber ascends from...Ch. 7 - BIO How High Can We Jump? The maximum height a...Ch. 7 - CP A 90.0-kg mail bag hangs by a vertical rope 3.5...Ch. 7 - BIO Food Calories. The food calorie, equal to 4186...Ch. 7 - A baseball is thrown from the roof of a...Ch. 7 - A crate of mass M starts from rest at the top of a...Ch. 7 - BIO Human Energy vs. Insect Energy. For its size,...Ch. 7 - Prob. 7.8ECh. 7 - Prob. 7.9ECh. 7 - A 25.0-kg child plays on a swing having support...Ch. 7 - You are testing a new amusement park roller...Ch. 7 - Tarzan and Jane. Tarzan, in one tree, sights Jane...Ch. 7 - CP A 10.0-kg microwave oven is pushed 6.00 m up...Ch. 7 - An ideal spring of negligible mass is 12.00 cm...Ch. 7 - A force of 520 N keeps a certain spring stretched...Ch. 7 - BIO Tendons. Tendons are strong elastic fibers...Ch. 7 - A spring stores potential energy U0 when it is...Ch. 7 - A slingshot will shoot a 10-g pebble 22.0 m...Ch. 7 - A spring of negligible mass has force constant k =...Ch. 7 - A 1.20-kg piece of cheese is placed on a vertical...Ch. 7 - A spring of negligible mass has force constant k =...Ch. 7 - (a) For the elevator of Example 7.9 (Section 7.2),...Ch. 7 - A 2.50-kg mass is pushed against a horizontal...Ch. 7 - A 2.50-kg block on a horizontal floor is attached...Ch. 7 - You are asked to design a spring that will give a...Ch. 7 - A 75-kg roofer climbs a vertical 7.0-m ladder to...Ch. 7 - A 0.60-kg book slides on a horizontal table. The...Ch. 7 - CALC In an experiment, one of the forces exerted...Ch. 7 - A 62.0-kg skier is moving at 6.50 m/s on a...Ch. 7 - Vector A is in the direction 34.0 clockwise from...Ch. 7 - CALC A force parallel to the .v-axis acts on a...Ch. 7 - CALC The potential energy of a pair of hydrogen...Ch. 7 - CALC A small block with mass 0.0400 kg is moving...Ch. 7 - CALC An object moving in the xy-plane is acted on...Ch. 7 - CALC The potential energy of two atoms in a...Ch. 7 - A marble moves along the x-axis. The...Ch. 7 - At a construction site, a 65.0-kg bucket of...Ch. 7 - Two blocks with different masses are attached to...Ch. 7 - A block with mass 0.50 kg is forced against a...Ch. 7 - A 2.00-kg block is pushed against a spring with...Ch. 7 - A 2.00-kg block is pushed against a spring with...Ch. 7 - CP Riding a Loop-the- Loop. A car in an amusement...Ch. 7 - A 2.0-kg piece of wood slides on a curved surface...Ch. 7 - Up and Down the Hill. A 28-kg rock approaches the...Ch. 7 - A 15.0-kg stone slides down a snow-covered hill...Ch. 7 - CP A 2.8-kg block slides over the smooth, icy hill...Ch. 7 - Bungee Jump. A bungee cord is 30.0 m long and,...Ch. 7 - You are designing a delivery ramp for crates...Ch. 7 - The Great Sandini is a 60-kg circus performer who...Ch. 7 - A 1500-kg rocket is to be launched with an initial...Ch. 7 - A system of two paint buckets connected by a...Ch. 7 - These results are from a computer simulation for a...Ch. 7 - CP A 0.300-kg potato is tied to a string with...Ch. 7 - A 60.0-kg skier starts from rest at the top of a...Ch. 7 - Prob. 7.55PCh. 7 - A ball is thrown upward with an initial velocity...Ch. 7 - Prob. 7.57PCh. 7 - A truck with mass m has a brake failure while...Ch. 7 - CALC A certain spring found not to obey Hookes law...Ch. 7 - CP A sled with rider having a combined mass of 125...Ch. 7 - CALC A conservative force F is in the +x-direction...Ch. 7 - A 3.00-kg block is connected to two ideal...Ch. 7 - A 0.150-kg block of ice is placed against a...Ch. 7 - If a fish is attached to a vertical spring and...Ch. 7 - CALC You are an industrial engineer with a...Ch. 7 - A basket of negligible weight hangs from a...Ch. 7 - CALC A 3.00-kg fish is attached to the lower end...Ch. 7 - You are designing an amusement park ride. A cart...Ch. 7 - A 0.500-kg block, attached to a spring with length...Ch. 7 - CP A small block with mass 0.0400 kg slides in a...Ch. 7 - CP A small block with mass 0.0500 kg slides in a...Ch. 7 - CP Pendulum. A small rock with mass 0.12 kg is...Ch. 7 - A wooden block with mass 1.50 kg is placed against...Ch. 7 - CALC A small object with mass m = 0.0900 kg moves...Ch. 7 - CALC A cutting tool under microprocessor control...Ch. 7 - A particle moves along the x-axis while acted on...Ch. 7 - Prob. 7.77PCh. 7 - DATA A long ramp made of cast iron is sloped at a...Ch. 7 - DATA A single conservative force F(x) acts on a...Ch. 7 - CALC A proton with mass m moves in one dimension....Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...
Additional Science Textbook Solutions
Find more solutions based on key concepts
42. A bicycle wheel is rotating at 50 rpm when the cyclist begins to
pedal harder, giving the wheel a constant...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Dominant Life. While most of us tend to think of ourselves as the dominant form of life on Earth, biologists ge...
Life in the Universe (4th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
You drop a rock into a deep well and 4.4 s later hear a splash. How far down is the water? Neglect the travel t...
Essential University Physics: Volume 1 (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The 1.1 kgkg physics book in figure is connected by a string to a 550 gg coffee cup. The book is given a push up the slope and released with a speed of 2.9 m/sm/s . The coefficients of friction are μsμs =0.50=0.50 and μkμk =0.20=0.20. How far does the book slide? Express your answer with the appropriate units.arrow_forwardYou are an industrial engineer with a shipping company. As part of the package-handling system, a small box with mass 1.60 kg is placed against a light spring that is compressed 0.280 m. The spring, whose other end is attached to a wall, has force constant k = 45.0 N/m. The spring and box are released from rest, and the box travels along a horizontal surface for which the coefficient of kinetic friction with the box is mk = 0.300. When the box has traveled 0.280 m and the spring has reached its equilibrium length, the box loses contact with the spring. (a) What is the speed of the box at the instant when it leaves the spring? (b) What is the maximum speed of the box during its motion?arrow_forwardYou are an industrial engineer with a shipping company. As part of the package-handling system, a small box with mass 1.20 kg is placed against a light spring that is compressed 0.280 m. The spring, whose other end is attached to a wall, has force constant k = 48.0 N/m. The spring and box are released from rest, and the box travels along a horizontal surface for which the coefficient of kinetic friction with the box is μ = 0.300. When the box has traveled 0.280 m and the spring has reached its equilibrium length, the box loses contact with the spring. Part A What is the speed of the box at the instant when it leaves the spring? Express your answer with the appropriate units. V = Submit Value Part B X Incorrect; Try Again Umax = Previous Answers Request Answer Units What is the maximum speed of the box during its motion? Express your answer with the appropriate units. Value ? Units ?arrow_forward
- A boy pulls a bag of baseball bats across a ball field toward the parking lot. The bag of bats has a mass of 6.9 kg, and the boy exerts a horizontal force of 22 N on the bag. As a result, the bag accelerates from rest to a speed of 1.08 m/s in a distance of 5.05 m. What is the coefficient of kinetic friction between the bag and the ground?arrow_forwardA horizontal spring with spring constant 290 N/m is compressed by 15 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed? Express your answer with the appropriate units.arrow_forwardA frictionless block of mass 0.5 kg slides down a ramp of height 0.2 m and onto a horizontal frictionless table. A circular frictionless wall forces the block to move in a circular path. Using gravity as 10m/s^2, calculate the vertical component of the net force on the block.arrow_forward
- When a 3.5 kg block is pushed against a massless spring of force constant 4.5 x 103 N/m, the spring is compressed 7.9 cm. The block is released, and it slides 2.8 m (from the point at which it is released) across a horizontal surface before friction stops it. What is the coefficient of kinetic friction between the block and the surface?arrow_forwardAn M = 22.4 kg sled slides on a rough horizontal ground. The sled hits a spring when it is traveling with a horizontal velocity of vi = 12.3 m/s. The sled compresses the spring at a distance of x = 2.12 m before coming to rest. If the force constant of the spring is k = 550 N/m, find the effective coefficient of kinetic friction, μk, between the sled and the groundarrow_forwardReview. Two constant forces act on an object of mass m = 5.00 kg moving in the xy plane as shown in Figure P7.45. Force F, is 25.0 N at 35.0°, and force F, is 42.0 N at 150°. At time t = 0, the object is at the origin and has velocity (4.00î + 2.50j) m/s. (a) Express the two forces in unit-vector notation. Use unit-vector notation for your other answers. (b) Find the total force exerted on the object. (c) Find the object's acceleration. Now, considering the instant t = 3.00 s, find (d) velocity, (e) its position, (f) its from mv, and (g) its the object's kinetic energy F kinetic from 150° energy Jm Σ . Δr. (h) What conclusion can you draw by comparing the answers to parts (f) and (g)? 35.0° m Figure P7.45arrow_forward
- A student places her 410 g physics book on a frictionless table. She pushes the book against a spring, compressing the spring by 8.80 cm , then releases the book. What is the book's speed as it slides away? The spring constant is 1550 N/m .arrow_forwardA glider of mass 0.275kg is placed at rest on an air track that has an angle of inclination of 10°. The height of the glider above the table is 30cm. The glider is released traveling 1.15m down along the track. When the glider is at 10cm above the height of the table, the velocity is 1.5m/s. What is the frictional force acting on the glider?arrow_forwardA 54 g ice cube can slide without friction up and down a 30∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 10 cm. The spring constant is 23 N/m . When the ice cube is released, what total distance will it travel up the slope before reversing direction? Δs = 43 cm The ice cube is replaced by a 54 g plastic cube whose coefficient of kinetic friction is 0.20. How far will the plastic cube travel up the slope? ?????arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY