Organic Chemistry
Organic Chemistry
2nd Edition
ISBN: 9781118452288
Author: David R. Klein
Publisher: WILEY
Question
Book Icon
Chapter 7, Problem 70IP
Interpretation Introduction

Interpretation:

The major product for the given reaction conditions should be identified.

Concept Introduction

SN2 Reaction: It is a nucleophilic substitution reaction in which the rate determining step depends on both of the molecules involved. The bond making and the bond breaking process happens simultaneously in this reaction.

Structure of the substrate plays major role in the reactivity of SN2 reaction. If the substrate is more substituted then the rate of the reaction will becomes slower. Since the mechanism of SN2 reaction proceeds through backside attack on the substrate, it depends on steric factor that if more groups attached near the leaving group the reactivity becomes slower. The SN2 reactivity increases in molecule with better leaving group. The reactivity increases in the order as follows,

Organic Chemistry, Chapter 7, Problem 70IP

Leaving group: it is a fragment that leaves substrate with a pair of electrons via heterolytic bond cleavage.

Nucleophile: donates pair of electrons to positively charged substrate resulting in the formation of chemical bond.

Blurred answer
Students have asked these similar questions
2. Consider the following intramolecular aldol condensation. This result is fully consistent with the two rules we use to determine the likely product of intramolecular aldol condensation reactions. Rule 1: Only form 5 or 6 membered rings, rule 2: the less- hindered carbonyl group will serve as the electrophile. OH- H₂O product not formed Interestingly, if the same starting material is treated with a secondary amine such as pyrrolidine and some acid, the other product is formed preferentially. Describe the mechanism for what is happening in the presence of amine and acid. (6 points)
Draw the structure of ,-diethyl--propylthiopentane.  With explanation
A. Provide a stepwise mechanism for the formation of nerolidyl pyrophosphate fromfarnesylpyrophosphate B. Provide a stepwise mechanism for the formation of carbocation 1 from nerolidylpyrophosphate. Number the backbone carbons of nerolidyl pyrophosphate from 1 to 11 as shown, andinclude the carbon numbering in your structure of 1 C. Following from B, give an arrow-pushing mechanism to convert 1 to 2 and 2 to 3. Use thebackbone carbon numbering from 1 to indicate where carbon atoms ended up in 2 and 3 D. In addition to forming epi-cedrol, carbocation 3 gives three minor byproducts: a diastereomericalcohol and two alkenes. Draw mechanisms that could give rise to these three products

Chapter 7 Solutions

Organic Chemistry

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY