College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 32TP
To determine
An experiment to measure the effectiveness of loose gravel in stopping a car.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are driving your car on a straight road with a coefficient of friction between the tires and the road of 0.55. A large piece of debris falls in front of your view and you immediate slam on the brakes, leaving a skid mark of 30.5 m (100-feet) long before coming to a stop. A policeman sees your car stopped on the road, looks at the skid mark, and gives you a ticket for traveling over the 13.4 m/s (30 mph) speedlimit. Draw the FBD of the car with complete details.
need help
At an accident scene on a level road, investigators measure a car's skid mark to be 88 m long. It was a rainy day and the coefficient of friction was estimated to be 0.35.
a.)Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. Express your answer to two significant figures and include the appropriate units.
Chapter 7 Solutions
College Physics
Ch. 7 - Give an example of something think of as work in...Ch. 7 - Give an example of a situation in which there is a...Ch. 7 - Describe a situation in which a force is exerted...Ch. 7 - The person in Figure 7.33 does work on the lawn...Ch. 7 - Work done on a system puts energy into it Work...Ch. 7 - When solving for speed in Example 7.4, we kept...Ch. 7 - In Example 7.7, we calculated the final speed of a...Ch. 7 - Does the work you do on a book when you lift it...Ch. 7 - What is a conservative force?Ch. 7 - The force exerted by a diving board is...
Ch. 7 - Define mechanical energy. What is the relationship...Ch. 7 - What is the relationship of potential energy to...Ch. 7 - Consider the following scenario. A car for which...Ch. 7 - Describe the energy transfers and transformations...Ch. 7 - Do devices with efficiencies of less than one...Ch. 7 - List four different forms or types of energy. Give...Ch. 7 - List the energy conversions that occur when riding...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Explain why it is easier to climb a mountain on a...Ch. 7 - Do you do work on the outside world when you rub...Ch. 7 - Shivering is an involuntary response to lowered...Ch. 7 - Discuss the relative effectiveness of dieting and...Ch. 7 - What is the difference between energy conservation...Ch. 7 - If the efficiency of a coal-fired electrical...Ch. 7 - How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - Compare the kinetic energy of a 20,000-kg truck...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Confirm the value given for the kinetic energy of...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car's bumper is designed to withstand a 4.0-km/h...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A hydroelectric power facility (see Figure 7.38)...Ch. 7 - (a) How much gravitational potential energy...Ch. 7 - Suppose a 350-g kookaburra (a large kingfisher...Ch. 7 - In Example 7.7, we found that the speed of a...Ch. 7 - A 100-g toy car is propelled by a compressed...Ch. 7 - In a downhill ski race, surprisingly, little...Ch. 7 - A 5.00105 -kg subway train is brought to a stop...Ch. 7 - A pogo stick has a spring with a force constant of...Ch. 7 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 7 - (a) How high a hill can a car coast up (engine...Ch. 7 - Using values from Table 7.1, how many DNA...Ch. 7 - Using energy considerations and assuming...Ch. 7 - If the energy in fusion bombs were used to supply...Ch. 7 - (a) Use of hydrogen fusion to supply energy is a...Ch. 7 - The Crab Nebula (see Figure 7.41) pulsar is the...Ch. 7 - Suppose a star 1000 times brighter than our Sun...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Find the useful power output of an elevator...Ch. 7 - (a) What is the available energy content, in...Ch. 7 - (a) How long would it takea 1.50105 -kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - (a) Calculate the power per square meter reaching...Ch. 7 - (a) How long can you rapidly climb stairs...Ch. 7 - (a) What is the power output in watts and...Ch. 7 - Calculate the power output in watts and horsepower...Ch. 7 - (a) What is the efficiency of an out-of-condition...Ch. 7 - Energy that is not utilized for work or heat...Ch. 7 - Using data from Table 7.5, calculate the daily...Ch. 7 - What is the efficiency of a subject on a treadmill...Ch. 7 - Shoveling snow can be extremely taxing because the...Ch. 7 - Very large forces are produced in joints when a...Ch. 7 - Jogging on hard surfaces with insufficiently...Ch. 7 - (a) Calculate the energy in kJ used by a 55.0-kg...Ch. 7 - Kanellos Kanellopoulos flew 119 km from Crete to...Ch. 7 - The swimmer shown in Figure 7.44 exerts an average...Ch. 7 - Mountain climbers carry bottled oxygen when at...Ch. 7 - The awe-inspiring Great Pyramid of Cheops was...Ch. 7 - (a) How long can you play tennis on the 800 kJ...Ch. 7 - Integrated Concepts (a) Calculate the force the...Ch. 7 - Integrated Concepts A 75.0-kg cross-country skier...Ch. 7 - Integrated Concepts The 70.0-kg swimmer in Figure...Ch. 7 - Integrated Concepts A toy gun uses a spring with a...Ch. 7 - Integrated Concepts (a) What force must be...Ch. 7 - Unreasonable Results A car advertisement claims...Ch. 7 - Unreasonable Results Body fat is metabolized,...Ch. 7 - Construct Your Own Problem Consider a person...Ch. 7 - Construct Your Own Problem Consider humans...Ch. 7 - Integrated Concepts A 105-kg basketball player...Ch. 7 - Prob. 1TPCh. 7 - Prob. 2TPCh. 7 - Prob. 3TPCh. 7 - Prob. 4TPCh. 7 - Prob. 5TPCh. 7 - Prob. 6TPCh. 7 - Prob. 7TPCh. 7 - Prob. 8TPCh. 7 - Prob. 9TPCh. 7 - Prob. 10TPCh. 7 - Prob. 11TPCh. 7 - Prob. 12TPCh. 7 - Prob. 13TPCh. 7 - Prob. 14TPCh. 7 - Prob. 15TPCh. 7 - Prob. 16TPCh. 7 - Prob. 17TPCh. 7 - Prob. 18TPCh. 7 - Prob. 19TPCh. 7 - Prob. 20TPCh. 7 - Prob. 21TPCh. 7 - Prob. 22TPCh. 7 - Prob. 23TPCh. 7 - Prob. 24TPCh. 7 - Prob. 25TPCh. 7 - Prob. 26TPCh. 7 - Prob. 27TPCh. 7 - Prob. 28TPCh. 7 - Prob. 29TPCh. 7 - Prob. 30TPCh. 7 - Prob. 31TPCh. 7 - Prob. 32TPCh. 7 - Prob. 33TPCh. 7 - Prob. 34TPCh. 7 - Prob. 35TPCh. 7 - Prob. 36TPCh. 7 - Prob. 37TPCh. 7 - Prob. 38TPCh. 7 - Prob. 39TPCh. 7 - Prob. 40TPCh. 7 - Prob. 41TPCh. 7 - Prob. 42TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Repeat the preceding problem, but including a drag force due to air of fdrag=bv .arrow_forwardPick an isolated system for the following scenarios while including the fewest number of objects as possible. a. A satellite in orbit around the Earth b. An airplane in flight c. A truck driving along the road d. A person jumpingarrow_forwardYou are driving your car on a straight road with a coefficient of friction between the tires and the road of 0.55. A large piece of debris falls in front of your view and you immediately slam on the brakes, leaving a skid mark of 30.5 m (100-feet) long before coming to a stop. A policeman sees your car stopped on the road looks at the skid mark and gives you a ticket for traveling over the 13.4 m/s (30 mph) speed limit.a) Draw the FBD of the car with complete details.b) Based on the work-energy theorem, you were likely speeding and should not fight this ticket. Prove this.arrow_forward
- The coefficient of friction between the tires of Shirley's 1985 Ford Coupe and the dry pavement is 0.71. She doesn't drive the car often because it's becoming an antique, but she took it out for a gentle drive yesterday. While driving, she has to suddenly and forcefully brake when the light turned red. She probably shouldn't have been texting and driving! Her car (mass = 1.39x103 kg) skids to a stop with an acceleration magnitude of _____ m/s2. Use the approximation g ≈ 10 m/s2.arrow_forward1.A train is traveling up a 3.73° incline at a speed of 3.25 m/swhen the last car breaks free and begins to coast without friction. (a) How long does it take for the last car to come to rest momentarily? (b) How far did the last car travel before momentarily coming to rest? Graph and Explain..arrow_forwardThe coefficient of friction between the tires of Shirley's 1985 Ford Coupe and the dry pavement is 0.74. She doesn't drive the car often because it's becoming an antique, but she took it out for a gentle drive yesterday. While driving, she has to suddenly and forcefully brake when the light turned red. She probably shouldn't have been texting and driving! Her car (mass = 1.31x10³ kg) skids to a stop with an acceleration of m/s². Use the approximation g = 10 m/s².arrow_forward
- A 0.5 kg object moves in a horizontal circular track with a radius of 2.5 m. An external force of 3.0 N, acting always tangent to the track, causes the object to speed up as it goes around. If it starts from rest, its speed at the end of one revolution is:arrow_forwardAn airplane of mass 3.60 × 105 kg experienced a problem with all its tires when it was about to touch down at a runway of an airport. The tires were deadlocked and not able to roll. The airplane began to skid once it touched down and left behind a 728 m long skid mark on the runway before it came to a stop. Even though everyone on the airplane was safe, the pilot was accused of failing to land the airplane within the allowable speed limit of 80.0 m/s and his pilot license was suspended. Given that the coefficient of kinetic friction between the tires and runway was 0.496. (i) Determine the work done by friction on the tires.(ii) Use the Work-Energy Theorem to evaluate if the suspension of the pilot’s license should be revoked. #This is an exercise question, please help. Thank You.arrow_forwardThe heaviest watermelon weighed in at 159 kg (350.5 lbs.) and was grown by Chris Kent (USA) of Sevierville, Tennessee. Chris releases the watermelon from rest from the top of a 150.0m tall building by a small crane. We neglect air resistance. If needed, use 9.80 m/s2 for the magnitude of g. What is the time it takes to hit the ground after being released and what will be the final impact velocity when it hits the ground? Report answers to 3 sig figs.arrow_forward
- A car of mass m = 1100 kg is traveling down a θ = 14 degree incline. When the car's speed is v0 = 13 m/s, a mechanical failure causes all four of its brakes to lock. The coefficient of kinetic friction between the tires and road is μk = 0.45. Calculate the distance the car travels down the hill L in meters until it comes to a stop at the endarrow_forwardA car of mass m = 1150 kg is traveling down a e = 11 degree incline. When the car's speed is vo = 11 m/s, a mechanical failure causes all four of its brakes to lock. The coefficient of kinetic friction between the tires and road is uz = 0.45. 0+ Otheexpertta.com Calculate the distance the car travels down the hill L in meters until it comes to a stop at the end. L =arrow_forwardIn a crash test, a car is driven into a solid wall at a speed of 35 mph. the car's acceleration as it crashes into the wall. What is the maximum force experienced by the 1530kg car?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY