College Physics
College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 23CQ

Shivering is an involuntary response to lowered body temperature. What is the efficiency of the body when shivering, and is this a desirable value?

Blurred answer
Students have asked these similar questions
A freezer has a coefficient of performance of 6.30. It is advertised as using 376 kWh/yr. Note: One kilowatt-hour (kWh) is an amount of energy equal to running a 1-kW appliance for one hour. (a) On average, how much energy does it use in a single day? (b) On average, how much energy does it remove from the refrigerator in a single day? (c) What maximum mass of water at 19.7°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 105 J/kg, and its specific heat is 4186 J/kg · °C.)
A girl pulls a 5kg wagon with a force of 20 n for 7 m. If the final speed of the wagon is 3.5 m/s, determine the efficiency of this process
A freezer has a coefficient of performance of 6.30. The freezer is advertised as using 495 kW-h/y. Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour. (a) On average, how much energy does the freezer use in a single day? 1.356 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J (b) On average, how much thermal energy is removed from the freezer each day? 0.215 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J (c) What maximum amount of water at 21.0°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 x 105 J/kg, and the specific heat of water is 4186 J/kg . K.) kg

Chapter 7 Solutions

College Physics

Ch. 7 - Define mechanical energy. What is the relationship...Ch. 7 - What is the relationship of potential energy to...Ch. 7 - Consider the following scenario. A car for which...Ch. 7 - Describe the energy transfers and transformations...Ch. 7 - Do devices with efficiencies of less than one...Ch. 7 - List four different forms or types of energy. Give...Ch. 7 - List the energy conversions that occur when riding...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Explain why it is easier to climb a mountain on a...Ch. 7 - Do you do work on the outside world when you rub...Ch. 7 - Shivering is an involuntary response to lowered...Ch. 7 - Discuss the relative effectiveness of dieting and...Ch. 7 - What is the difference between energy conservation...Ch. 7 - If the efficiency of a coal-fired electrical...Ch. 7 - How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - Compare the kinetic energy of a 20,000-kg truck...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Confirm the value given for the kinetic energy of...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car's bumper is designed to withstand a 4.0-km/h...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A hydroelectric power facility (see Figure 7.38)...Ch. 7 - (a) How much gravitational potential energy...Ch. 7 - Suppose a 350-g kookaburra (a large kingfisher...Ch. 7 - In Example 7.7, we found that the speed of a...Ch. 7 - A 100-g toy car is propelled by a compressed...Ch. 7 - In a downhill ski race, surprisingly, little...Ch. 7 - A 5.00105 -kg subway train is brought to a stop...Ch. 7 - A pogo stick has a spring with a force constant of...Ch. 7 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 7 - (a) How high a hill can a car coast up (engine...Ch. 7 - Using values from Table 7.1, how many DNA...Ch. 7 - Using energy considerations and assuming...Ch. 7 - If the energy in fusion bombs were used to supply...Ch. 7 - (a) Use of hydrogen fusion to supply energy is a...Ch. 7 - The Crab Nebula (see Figure 7.41) pulsar is the...Ch. 7 - Suppose a star 1000 times brighter than our Sun...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Find the useful power output of an elevator...Ch. 7 - (a) What is the available energy content, in...Ch. 7 - (a) How long would it takea 1.50105 -kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - (a) Calculate the power per square meter reaching...Ch. 7 - (a) How long can you rapidly climb stairs...Ch. 7 - (a) What is the power output in watts and...Ch. 7 - Calculate the power output in watts and horsepower...Ch. 7 - (a) What is the efficiency of an out-of-condition...Ch. 7 - Energy that is not utilized for work or heat...Ch. 7 - Using data from Table 7.5, calculate the daily...Ch. 7 - What is the efficiency of a subject on a treadmill...Ch. 7 - Shoveling snow can be extremely taxing because the...Ch. 7 - Very large forces are produced in joints when a...Ch. 7 - Jogging on hard surfaces with insufficiently...Ch. 7 - (a) Calculate the energy in kJ used by a 55.0-kg...Ch. 7 - Kanellos Kanellopoulos flew 119 km from Crete to...Ch. 7 - The swimmer shown in Figure 7.44 exerts an average...Ch. 7 - Mountain climbers carry bottled oxygen when at...Ch. 7 - The awe-inspiring Great Pyramid of Cheops was...Ch. 7 - (a) How long can you play tennis on the 800 kJ...Ch. 7 - Integrated Concepts (a) Calculate the force the...Ch. 7 - Integrated Concepts A 75.0-kg cross-country skier...Ch. 7 - Integrated Concepts The 70.0-kg swimmer in Figure...Ch. 7 - Integrated Concepts A toy gun uses a spring with a...Ch. 7 - Integrated Concepts (a) What force must be...Ch. 7 - Unreasonable Results A car advertisement claims...Ch. 7 - Unreasonable Results Body fat is metabolized,...Ch. 7 - Construct Your Own Problem Consider a person...Ch. 7 - Construct Your Own Problem Consider humans...Ch. 7 - Integrated Concepts A 105-kg basketball player...Ch. 7 - Prob. 1TPCh. 7 - Prob. 2TPCh. 7 - Prob. 3TPCh. 7 - Prob. 4TPCh. 7 - Prob. 5TPCh. 7 - Prob. 6TPCh. 7 - Prob. 7TPCh. 7 - Prob. 8TPCh. 7 - Prob. 9TPCh. 7 - Prob. 10TPCh. 7 - Prob. 11TPCh. 7 - Prob. 12TPCh. 7 - Prob. 13TPCh. 7 - Prob. 14TPCh. 7 - Prob. 15TPCh. 7 - Prob. 16TPCh. 7 - Prob. 17TPCh. 7 - Prob. 18TPCh. 7 - Prob. 19TPCh. 7 - Prob. 20TPCh. 7 - Prob. 21TPCh. 7 - Prob. 22TPCh. 7 - Prob. 23TPCh. 7 - Prob. 24TPCh. 7 - Prob. 25TPCh. 7 - Prob. 26TPCh. 7 - Prob. 27TPCh. 7 - Prob. 28TPCh. 7 - Prob. 29TPCh. 7 - Prob. 30TPCh. 7 - Prob. 31TPCh. 7 - Prob. 32TPCh. 7 - Prob. 33TPCh. 7 - Prob. 34TPCh. 7 - Prob. 35TPCh. 7 - Prob. 36TPCh. 7 - Prob. 37TPCh. 7 - Prob. 38TPCh. 7 - Prob. 39TPCh. 7 - Prob. 40TPCh. 7 - Prob. 41TPCh. 7 - Prob. 42TP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY