Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 101P
Consider water flow through a horizontal, short garden hose at a rate of 30 kg mm. The velocity at the inlet is 1.5 ms and that at the outlet is 14.5 ms. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.04 at both the mulct and the outlet, the anchoring force required to hold the hose in place is
(a) 2.8N
(b) 8.6 N
(c) 17.5 N
(d) 27.9N
(c) 43.3N
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) A 90° elbow in a horizontal pipe is used to direct water flow upward at a rate of 40 kg/s,
as shown in the Figure 2. The diameter of the entire elbow is 10 cm. The elbow discharges
water into the atmosphere, and thus the pressure at the exit is the local atmospheric
pressure. The elevation difference between the centres of the exit and the inlet of the elbow
is 50 cm. The weight of the elbow and the water in it is considered to be negligible.
i)
Draw an appropriate control volume for the flow and state all your assumptions
clearly.
ii)
Determine the gage pressure at the centre of the inlet of the elbow
iii)
Determine the anchoring force needed to hold the elbow in place
50 cm
Water
40 kg/s
Figure 2
Consider water flow through a horizontal, short garden hose at a rate of 0.5 kg/s. The velocity at the inlet is 1.5 m/s and that at the outlet is 11.5 m/s. The hose makes a 180° turn before the water is discharged. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.04 at both the inlet and the outlet, the anchoring force required to hold the hose in place is:
A pump increases the pressure of water from 100 kPa to 1.2 MPa at a rate of 0.5 m3 /min. The inlet and outlet diameters are identical and there is no change in elevation across the pump. If the efficiency of the pump is 77 percent, the power supplied to the pump is (a) 11.9 kW (b) 12.6 kW (c) 13.3 kW (d ) 14.1 kW (e) 15.5 kW
Chapter 6 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - Two firefighters are fighting a fire with...Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - Water enters a 10-cm-diameter pipe steadily with a...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A horizontal water jet of constant velocity V...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - Reconsider Prob. 627. If the mass of the cart is...Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - A horizontal 5-cm-diameter water jet with a...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Water of density =998.2kg/m3 flows through a...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 52CPCh. 6 - Prob. 53CPCh. 6 - Prob. 54CPCh. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 57EPCh. 6 - Prob. 58PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - Prob. 60PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 62PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 66PCh. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - Prob. 70PCh. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - Prob. 80PCh. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 83EPCh. 6 - Prob. 84PCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 86PCh. 6 - Prob. 87PCh. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 94PCh. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Water flows steadily through a splitter as shown...Ch. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 103PCh. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Prob. 112PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- help me plsarrow_forwardWater at 20°C is pumped at a constant rate of 9 m3/h from a large reservoir resting on the floor to the open top of an experimental absorption tower. The point of discharge is 5 m above the floor, and friction losses in the 50-mm pipe from the reservoir to the tower amount to 2.5 J/kg. At what height in the reservoir must the water level be kept if the pump can deliver only 0.1 kW?The value of alpha we should use for the kinetic energy term is?arrow_forwardConsider water flow through a horizontal, short garden hose at a rate of 30 kg/min. The velocity at the inlet is 1.5 m/s and that at the outlet is 14.5 m/s. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.04 at both the inlet and the outlet, the anchoring force required to hold the hose in place is (a) 2.8 N (b) 8.6 N (c) 17.5 N (d) 27.9 N (e) 43.3 Narrow_forward
- Consider water flow through a horizontal, short pipe at a rate of 80 kg/min. The velocity at the inlet is 1.5 m/s and that at the outlet is 16.5 m/s. The pipe makes a 90° turn to a vertical direction before the water is discharged. Disregard the weight of the pipe and water. Taking the momentum-flux correction factor to be 1.04 at both the inlet and the outlet, the reaction force in the horizontal direction required to hold the pipe in place is (a) 73.7 N (b) 97.1 N (c) 99.2 N (d) 122 N (e) 153 Narrow_forwardThe force that drives the flow of fluids is the pressure difference; a pump works by raising thepressure of a fluid (converting it into mechanical work of its axis and energy of flow). It is determined thatA gasoline pump consumes 3.8 KW of electrical power when it is working. If the difference ofpressures between pump discharge and suction is 7 KPa, and the changes in speed and head aredespicable.Determine the maximum possible volumetric flow rate of the gasoline. (see img)arrow_forwardConsider water flow through a horizontal, short garden hose at a rate of 30 kg/min. The velocity at the inlet is 1.5 m/s and that at the outlet is 11.5 m/s. The hose makes a 180° turn before the water is discharged. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.04 at both the inlet and the outlet, the anchoring force required to hold the hose in place is (a) 7.6 N (b) 28.4 N (c) 16.6 N (d) 34.1 N (e) 11.9 Narrow_forward
- Consider water flow through a horizontal, short garden hose at a rate of 40 kg/min. The velocity at the inlet is 1.5 m/s and that at the outlet is 16 m/s. The hose makes a 90° turn to a vertical direction before the water is discharged. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.04 at both the inlet and the outlet, the reaction force in the vertical direction required to hold the hose in place is (a) 11.1 N (b) 10.1 N (c) 9.3 N (d) 27.2 N (e) 28.9 Narrow_forwardCOCA COLA's coke zero has a density of 970 kg/m3 from a bulk tank of 7.5 meters (P1-5.75 bars) flows before the pump at 3.5 m/s. The junkfood- drink is pumped at an unknown velocity to a 45-meter elevated filling tank with a pressure reading of (P2-10.7575 Bars) ready for filling the bottles, packaging and delivery. Assuming zero Friction losses and pump's efficiency is just 70%. Calculate the unknown final velocity in m/s for a mass of 75.75 kg and a time per minute of alcohol and power of pump @ 5hp.arrow_forwardConsider the following schematics for a sudden expansion in a pipe.(a) Using the mass and momentum balances to show that there is an overall increaseof pressure equal to the equation in the image.(b) Use energy balance to show that the frictional dissipation is like the equation shown in the image(c) For a constant u1 and A1, show that the pressure rise (P2 - P1) is a maximumwhen the diameter of the larger pipe is √2 times the fixed diameter of the smaller pipe,i.e., A2 = 2A1.arrow_forward
- A 3-in.-diameter horizontal water jet having a velocity of 97 ft/s strikes a curved plate, which deflects the water 180° at the same speed. Ignoring the frictional effects, determine the force required to hold the plate against the water stream. Take the density of water to be 62.4 lbm/ft³ Water jet. Vius- VIUS 13 in. The force required to hold the plate against the water stream is lbf.arrow_forward6-22 A 90° elbaw is used to direct water flow at a rate of 25 kgis in a horizontal pipe upward. The diameter of the entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centers of the exit and the inlet of the elbow is 35 cm. The weight of the elbow and the water in it is considered to be negligible. Determine (a) the gage pressure at the center of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place. Take the momentum-flux correction factor to be 1.03. 35 cm Water 25 kg/sarrow_forwardA 90° elbow in a horizontal pipe is used to direct water flow upward at a rate m of 37 kg/s. The diameter of the entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centers of the exit and the inlet of the elbow is 50 cm. The weight of the elbow and the water in it is considered to be negligible. Take the density of water to be 1000 kg/m³ and the momentum-flux correction factor to be 1.03 at both the inlet and the outlet. Water m kg/s O 50 cm Determine the anchoring force needed to hold the elbow in place. The anchoring force needed to hold the elbow in place is The resultant direction of the force is 155 429 N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License