College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Suppose you are talking by interplanetary telephone to a friend who lives on the Moon. He tells you that he has just won a newton of gold in a contest. Excitedly, you tell him that you entered the Earth version of the same contest and also won a newton of gold! Who is richer? (a) You are. (b) Your friend is. (c) You are equally rich.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the observation that the acceleration due to the gravitational force acting on a mass around a host planet decreases with the square of the separation between the objects. We can ask ourselves: why is it still accurate to consider a gravitational acceleration value of 9.8\frac{m}{s^2}9.8s2m for all of our projectile motion problems and all of our gravitational potential energy from prior modules? Let's analyze a situation and justify this analysis method: consider an object being launched from ground level to an altitude of 10,000 meters, roughly the cruising altitude of most jet liners, and far above our everyday experiences on Earth's surface. Compare the gravitational acceleration of the object at Earth's surface (the radius of Earth is about r_E=6.37\times10^6mrE=6.37×106m) to the acceleration value at the 10,000 meter altitude by determining the following ratio: g10,000m/gsurfacearrow_forwardWe will use differential equations to model the orbits and locations of Earth, Mars, and the spacecraft using Newton’s two laws mentioned above. Newton’s second law of motion in vector form is: F^→=ma^→ (1) where F^→ is the force vector in N (Newtons), and a^→ is the acceleration vector in m/s^2,and m is the mass in kg. Newton’s law of gravitation in vector form is: F^→=GMm/lr^→l*r^→/lr^→l where G=6.67x10^-11 m^3/s^2*kg is the universal gravitational constant, M is the mass of the larger object (the Sun), and is 2x10^30 kg, and m is the mass the smaller one (the planets or the spacecraft). The vector r^→ is the vector connecting the Sun to the orbiting objects. Step one ) The motion force in Equation(1), and the gravitational force in Equation(2) are equal. Equate the right hand sides of equations (1) and (2), and cancel the common factor on the left and right sides. Answer: f^→=ma^→ f=Gmm/lr^→l^2 a^→=Gmm/lr^→l^2 x r^→/lr^→l r^→=r^→/lr^→l * Gmm Could you please…arrow_forwardJupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93×1022kg8.93×1022kg and a radius of 1821 km. How high would this material go on earth if it were ejected with the same speed as on Io? (RE = 6370 km, mE=5.96×1024kg)arrow_forward
- A sun rays take about 8 minutes to reach the Earth surface travelling at constant speed v= 3,0 * 10^8 m/s. How far is earth from the sun?arrow_forwardThe mass of an electron is m=9.11*10^-31 kg. The mass of a proton is m=1.67*10^-27 kg. They are about 5.29*10^-11 m apart in a hydrogen atom. What gravitational force exists between the proton and electron of a hydrogen atom?arrow_forwardAn endless thin wire of density Y1 (unit: kg/m) is just above the x axis. An infinitely thin layer of density Y2 (unit: kg/m²) is parallel to the x-y plane and intersects the z-axis at the point z= -a. Find the gravitational field at (x,y,z) position. Give your answer in terms of (G,Y1,Y2, a, x, y, z, ^x, ^y, ^z(unit vectors)). Hint: A hint is given in the figure. The result will be (+ and -).arrow_forward
- Q. 23 : The universal gravitational constant has the dimensions. (a) [M¡ L-3 T²] (b) [m-1 L³ T-²] (c) [M-1 L-3 T] (d) [m' L³ T²]arrow_forwardWe sent a probe out to orbit the planet Kerbal at a distance of 5.5x107m from the middle of the planet. It took our probe 3.5x105s to orbit the planet. Calculate the mass of planet Kerbal. Possible Formulas that can be used to answer the question: v=(2πr)/T ac=v2/r ac=(4π2r)/T2 Fc=mac Fg=mg F=(Gm1m2)/d2 g=Gm/r2 T2=(4π2/Gm)r3 v=√(Gm)/r g=9.80m/s2 G=6.67x10-11 (N∙m2)/kg2arrow_forwardAn object of mass m is released from rest a distance R above the surface of a planet of mass M and radius R. Derive an expression for the speed with which it hits the planet’s surface v.arrow_forward
- A 2660-kg spacecraft is in a circular orbit 1540 km above the surface of Mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4500 km above the surface? Express your answer to three significant figures.arrow_forwardThe density of Planet Y in the previous problem is Show the entire calculation. Calculation: The universal gravitational -11 3 -1 -2 constant is 6.67430*10 m kg s . Planet Y has a radius of 5360km or 5.360*10 m and a mass of 4.56*10²3 kg. On this planet, a rock falls vertically down from a cliff overhang to the ground. The height of the cliff is 86m. The time it M takes the rock to fall from the overhang to the ground is Show the entire calculation. Calculation: g = G*- The density O R of Planet Y in the previous problem is Show the entire calculation. Calculation:arrow_forwardThree little ducks @ 4 4 crossing a highway at 0.5 mph. The third duckling sees a car coming at 20 mph, but the others are already in the middle of the road. You are the second duckling. What will happen to you and why??arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON