Fundamentals of Physics Extended
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 44, Problem 42P

Due to the presence everywhere of the cosmic background radiation, the minimum possible temperature of a gas in interstellar of intergalactic space is not 0 K but 2.7 K. This implies that a significant fraction of the molecules in space that can be in a low-level excited state may, in fact, be so. Subsequent de-excitation would lead to the emission of radiation that could be detected. Consider a (hypothetical) molecule with just one possible excited state. (a) What would the excitation energy have to be for 25% of the molecules to be in the excited state? (Hint: See Eq. 40-29.) (b) What would be the wavelength of the photon emitted in a transition back to the ground state?

Blurred answer
Students have asked these similar questions
Due to the presence everywhere of the cosmic background radiation, the minimum possible temperature of a gas in interstellar or intergalactic space is not 0 K but 2.7 K. This implies that a significant fraction of the molecules in space that can be in a lowlevel excited state may, in fact, be so. Subsequent de-excitation would lead to the emission of radiation that could be detected. Consider a (hypothetical) molecule with just one possible excited state. (a) What would the excitation energy have to be for 25% of the molecules to be in the excited state? (b) What would be the wavelength of the photon emitted in a transition back to the ground state?
You are performing work as an assistant to a cosmology professor. She asks you to estimate the temperature of the Universe at a time after the Big Bang when neutral atoms could form from the plasma and the Universe became transparent. She tells you that the energy required to excite an atom is on the order of 1 eV. She suggests you use the Boltzmann distribution function e-E/k BT to find the order of magnitude of the threshold temperature at which 1.00% of a population of photons has energy greater than 1.00 eV.
The partition function of an ensemble at a temperature T is N Z = (2 cosh kgT where kg is the Boltzmann constant. The heat capacity of this ensemble at T = is X Nkg, where the value of X is %3D kB (up to two decimal places).
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY