Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 36P
To determine
To find:
(a) if the Fermi level is above or below the top of the silicon valence band.
(b) how far, above or below, is this Fermi level (as calculated in (a)).
(c) the probability that a state at the bottom of the silicon
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Fermi energy of copper at 300 K is 7.05 eV. (a) What is the average energy of a conduction electron in copper at 300 K? (b) At what temperature would the average translational energy of a molecule in an ideal gas be equal to the energy calculated in part (a)?
Time left
In a phosphorous-doped (n-type) silicon, the Fermi level is shifted upward 0.1 eV.
What is the probability of an electron's being thermally promoted to the conduction band in silicon (Eg = 1.107 eV at 25 deg C?
Your answer must be to 2 significant figures or will be marked wrong.
Ne
The Fermi energies of two metals X and Y are 5 eV and 7eV and their Debye
temperatures are 170 K and 340 K , respectively. The molar specific heats of these
metals
volume
at
low
temperatures
be
written
as
at
constant
can
(C, )x =rxT + AxT' and (C, ), =7yT+ A,T³ where y and A are constants. Assuming
that the thermal effective mass of the electrons in the two metals are same, which of the
following is correct?
7 Ax
= 8
(b)
Y x
7 Ax
1
(a)
= -
= -
5'Ay
5' A,
8.
Y
Y x
5 Аx
1
Y x
5 Аx
(c)
(d)
= 8
= -
7' Ay
7' Ay
8.
II
II
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- Question 1: For a certain semiconductor material, Ec=1.5 eV, Fermi level is located 1.45 eV above the highest level of the valence band. If E, is located 0.008 eV above the bottom of the conduction band, assume room temperature (T=300 K) and KT= 0.026 eV Answer the following: a) What is the probability that a state in the conduction band with energy E=E, is occupied? b) Find the density of states at energy level Ej, if the semiconductor material is Si. x1045 c) What type of semiconductor material is described in the questionarrow_forwardCopper metal can be well-described by assuming that the electrons inside are free, with a den- sity ne = 8.47 × 1028 m-³. Calculate the Fermi energy EF.arrow_forwardSilicon is doped with 3×1017 arsenic atoms/cm3. (a) Is this n-or p-type silicon?(b)What are the hole and electron concentrations at room temperature? (c) What are the hole and electron concentrations at 250 K?arrow_forward
- An n-type Si wafer has been doped uniformly with 10" cm antimony (Sb) atoms. Calculate the position of the Fermi energy with respect to the Fermi energy Er in intrinsic Si nlx10" cm] 0.363 eV 0.288 eV O 0.298 eV O 0.267eVarrow_forwardMetallic lithium has a bcc crystal structure. Each unit cell is a cube of side length a = 0.35 nm. (a) For a bcc lattice, what is the number of atoms per unit volume? Give your answer in terms of a. (Hint: How many atoms are there per unit cell?) (b) Use the result of part (a) to calculate the zero-temperature Fermi energy EF0 for metallic lithium. Assume there is one free electron per atom.arrow_forwardSilicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of 1018 cm-3 a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density. Which type of semiconductor is obtained? b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.arrow_forward
- The energy gaps Eg for the semiconductors silicon and germanium are, respectively, 1.12 and 0.67 eV. Which of the following statements, if any, are true? (a) Both substances have the same number density of charge carriers at room temperature. (b) At room temperature, germanium has a greater number density of charge carriers than silicon. (c) Both substances have a greater number density of conduction electrons than holes. (d) For each substance, the number density of electrons equals that of holes.arrow_forward(a) What is the minimum donor doping required to convert silicon into a conductor based on the definitions in Table ? (b) What is the minimum acceptor doping required to convert silicon into a conductor?arrow_forwardStarting with the Fermi energy given in Table , estimate the number of conduction electrons per atom for aluminum, which has density 2.70 x 103 kg/m3 at T = 300 Karrow_forward
- JA silicon wafer is doped with 1015 cm 3 donor atoms. Assume light generates density of electrons and holes equal to 1018 cm-3.Calculate the total electron and hole concentrations and location of the quasi-Fermi levels for the electrons and holes with respect to the intrinsic Fermi level. (n = 1x1010 cm-3, Ne = 2.8x1019 cm-3, Ny = 1.04x1019 cm3, T = 300K). %3Darrow_forwardThe Fermi energy for gold is 5.51 eV at T = 293 K. (a) Find the average energy of a conduction electron at that temperature. (b) Compute the temperature at which the average kinetic energy of an ideal gas molecule would equal the average energy you found in (a). (c) Comment on the relative temperatures in (a) and (b).arrow_forwardCalculate the conductivity of an intrinsic silicon at room temperature. If ten electrons out of 1010 electrons in Valence Band move to Conduction Band. Given the silicon density is (2.33×10 Kg/m³), the silicon atomie weight is (28.086), the electrons mobility is (0.15 m/V.sec.), and the holes mobility is (0.05 m2/V.sec.).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning