Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 15E
Kinesin is a “motor protein” responsible for moving materials within living cells. If it exerts a 6.0-pN force, what acceleration will it give a molecular complex with mass 3.0× 10−18 kg?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object with mass m = 34 kg is pushed with 452 N of force to be moved across a distance of 4.6 m on a surface with friction. Initially the object is moving at vi = 0.82 m/s and after being moved across 4.6 m, the final speed is 2.5 m/s. What is the magnitude of the frictional force acting on the object in the unit of N?
You are playing a game and you push a cart to give it in. speed. The cart starts at the bottom (zero) of a ramp and after reaching the top of the ramp, the cart travels across a horizontal track w/ friction. The mass of the cart is 44 x 10^-3 kg. The ramp is 56 cm high. The length is 70 cm. What can you infer of the intial speed in (m/s)
A 0.30 kg puck is being pushed across a table with a horizontal force of 2.0 N. It starts from rest and is pushed for 13 seconds, ending with a speed of 1 m/s. Calculate the coefficient of friction μk between the puck and the table.
Chapter 4 Solutions
Essential University Physics
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - Prob. 12ECh. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Find an expression for the thrust (force) of a...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Example 4.3: In the 2015 film The Martian, actor...Ch. 4 - Prob. 43ECh. 4 - A 166-g hockey puck is gliding across the ice at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - A small car, with mass 945 kg, is stuck on...Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 -
A hot-air balloon and its basket are accelerating...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why was Whler astonished to find he had made urea?
Campbell Biology (11th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.18 and the push imparts an initial speed of 3.9 m/sm/s ? Express your answer to two significant figures and include the appropriate units.arrow_forwardA person doing a chin-up weighs 700 N, exclusive of the arms. During the first 25.0 cm of the lift, each arm exerts an upward force of 355 N on the torso. If the upward movement starts from rest, what is the person’s velocity at that point?arrow_forwardA desperate hiker has to think fast to help his friend who has fallen below him. Quickly, he ties a rope to a rock of mA = 405 kg and makes his way over the ledge (see the figure below). If the coefficient of static friction between the rock and the ground is H=0.348, and the mass of the hiker is ma= 70.1 kg, what is the maximum mass of the friend, mc, that the rock can hold so the hikers can then make their way up over the ledge? Assume the rope is parallel to the ground and the point where the rope passes over the ledge is frictionless. (ANS: 70.8 kg)arrow_forward
- The IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn’t need to carry any fuel. The force on IKAROS’s sails was measured to be 1.12 mN. If this were the only force acting on the 290 kg spacecraft, by how much would its speed increase after 6 months of flight?arrow_forwardA horizontal force of 5.0N pushes a 0.50kg block against a verticalwall. The block is initially at rest. If μs =0.60 and μk = 0.80, the acceleration of the blockis?arrow_forwardA cart with mass 15.0 kg moves in a straight line on a frictionless horizontal surface. Take this surface to be along the x-axis. The cart has an initial speed of 8.00 m/s and it was pushed 5.00 m in the same direction as the initial velocity by an external force with a magnitude of 20.0 N. What is the cart's final speed?arrow_forward
- In a crash test, a car is driven into a solid wall at a speed of 35 mph. the car's acceleration as it crashes into the wall. What is the maximum force experienced by the 1530kg car?arrow_forwardTwo horses pull a cart with a total applied force of 1000N. The kinetic friction from the gravel road has a value of 375 N. Assuming the cart is 200kg, what is the acceleration of it?The road is flat and the horses are traveling in a straight path.arrow_forwardA stone used in the sport of curling has a mass of 18.0 kg and is initially at rest, sitting on a flat horizontal ice surface. It is pushed with a constant horizontal force of magnitude 24.0 N over a distance of 4.00 m. (Note that in the sport of curling, heavy masses called stones are pushed for a certain distance over a surface of ice before being allowed to continue without pushing. This question only considers the pushing phase. You may assume that any friction between the stone and the ice is negligible.) (a) (i) What is the acceleration of the stone and what is the work done in accelerating it? (ii) By considering the conservation of energy of the stone, calculate the speed of the stone at the end of the push. Show that you have checked that the value for the magnitude of speed and its unit are sensible. (b) How much power is supplied by the person pushing the stone at the beginning of the push and how much is supplied at the end of the push? (c) Starting from your calculated…arrow_forward
- Komi was on vacation and went to scale Mt. Banahaw. Her weight at the base of the mountain is 540 N, on top she weighs 539.5 N. Note that the gravity acceleration decreases about 0.373 cm/s² for each 1000 m ascent. Determine the height in m of a point above the base where her weight decreases by 2.375%.arrow_forwardTo assess a patient who is suspected of having heart disease, the physician must examine the cardiac function when (a) the patient is at rest with a heart beating at a normal pace, and (b) when under stress, for example, after exercise. To simulate the conditions of stress, the patient exercises by walking a treadmill to increase heart beat and sustain high levels of cardiac stress. Suppose a 50 kg patient exercises on the treadmill, angled at 30◦ from the ground, exerting a constant force of 500 N up the slope of the treadmill while running a constant velocity of 4 m/s along the treadmill for 5 minutes. The coefficient of friction of the treadmill is µs = 0.45. Determine the work done by the patient.arrow_forwardChapter 05, Problem 010 GO A 0.180 kg particle moves along an x axis according to x(t) = - 14.0 + 2.00 t + 4.00 2- 5.00 t, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.30 s ? Give an expression for the (a) x, (b) y and (c) z components. (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER powered by MapleNet ere to search 1:51 PM ENG 4/4/2021 ASUS 19home prt sc pause break delete f10 end f1Pgup f12Pgdn insert & 21 4. 8 backspo-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY