You are working for an alternative energy company. Your supervisor has an idea for a new energy source. He wants to build a matter-antimatter reactor that will convert the entire mass of the matter and antimatter into recoverable energy, with no waste. He has lofty ideas; he wants his reactor to provide energy to the entire world, replacing coal, fossil fuel, hydroelectric, wind, thermal, and nuclear energy sources in all countries. (a) He asks you to determine the masses of the supply of matter and antimatter that will need to be combined to provide the world’s needs for one year. (b) He also asks you to determine how large the storage containers must be to hold a 5.0-yr supply of the matter and antimatter while it is waiting to be used in the reactor. The current energy consumption worldwide is about 4.0 × 1020 J per year, and the matter and antimatter will have approximately the density of aluminum, 2.70 g/cm3.
You are working for an alternative energy company. Your supervisor has an idea for a new energy source. He wants to build a matter-antimatter reactor that will convert the entire mass of the matter and antimatter into recoverable energy, with no waste. He has lofty ideas; he wants his reactor to provide energy to the entire world, replacing coal, fossil fuel, hydroelectric, wind, thermal, and nuclear energy sources in all countries. (a) He asks you to determine the masses of the supply of matter and antimatter that will need to be combined to provide the world’s needs for one year. (b) He also asks you to determine how large the storage containers must be to hold a 5.0-yr supply of the matter and antimatter while it is waiting to be used in the reactor. The current energy consumption worldwide is about 4.0 × 1020 J per year, and the matter and antimatter will have approximately the density of aluminum, 2.70 g/cm3.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps